
JUMP START PHP
BY CALLUM HOPKINS

Jump Start PHP
by Callum Hopkins

Copyright © 2013 SitePoint Pty. Ltd.

English Editor: Paul FitzpatrickProduct Manager: Simon Mackie

Cover Designer: Alex WalkerTechnical Editor: Timothy Boronczyk

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by the

software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood

VIC Australia 3066

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9874674-0-9 (print)

ISBN 978-0-9874674-1-6 (ebook)

Printed and bound in the United States of America

ii

About Callum Hopkins

Callum is a web developer by trade and a designer by passion. Armed with knowledge in

both design and development processes, he is able to influence both sides of the web building

process. His passion for complex coding functions and beautiful design and functionality

drives him to seek out new ways to build, design and optimize web based solutions for clients

around the world.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums. You’ll find a stack of information on JavaScript, PHP, Ruby, mobile

development, design, and more.

About Jump Start

Jump Start books provide you with a rapid and practical introduction to web development

languages and technologies. Typically around 150 pages in length, they can be read in a

weekend, giving you a solid grounding in the topic and the confidence to experiment on

your own.

iii

http://www.sitepoint.com/

To all my family and friends,

thank you for your continued

support, and I love you all.

Table of Contents

Preface . xi

Who Should Read This Book . xi

Conventions Used . xi

Code Samples . xi

Tips, Notes, and Warnings . xiii

Supplementary Materials . xiii

Do You Want to Keep Learning? . xiv

Chapter 1 Server Kick-Start . 49

What is PHP? . 1

Setting Up . 2

Getting Started . 3

Windows . 3

Mac OS X . 6

Linux . 9

PHP Configuration . 11

Hello PHP World . 13

PHP Variables . 16

Arrays . 19

Comments . 20

Preparing Our Project . 21

Summary . 22

Chapter 2 PHP & Data . 23

Operators . 23

Conditional Statements . 25

if Statement . 25

else Statement . 25

elseif Statement . 26

switch Statement . 26

Loops . 28

for Loop . 28

while Loop . 29

foreach . 29

Databases, MySQL, and PHP . 30

Summary . 128

Chapter 3 Objects and OOP . 41

First Steps in OOP . 42

Extending Classes . 45

Templates . 49

Project Files . 52

Summary . 58

Chapter 4 Forms . 61

Form Elements . 61

POST and GET . 63

Form Action with PHP . 69

Superglobals and $_REQUEST . 70

Forms and Databases . 71

Building on our Platform . 74

Summary . 128

Chapter 5 Sessions and Cookies 89

Cookies: Overview . 89

viii

Sessions: Overview . 90

Session Vs Cookies . 91

Cookies . 91

Sessions . 92

Sessions and Cookies in PHP . 93

Cookies in PHP . 93

Sessions in PHP . 95

Project . 97

Summary . 128

Chapter 6 PHP and Security . 121

php.ini and Security . 121

allow_url_include . 122

open_basedir . 123

Error Management . 123

Improving Session Security . 124

Validating Submitted Data . 126

Summary . 128

Conclusion . 129

ix

Preface
PHP is considered as one of the most popular web based languages. At its core, PHP

was designed to help enhance web pages and make their content dynamic, but over

the years PHP has evolved in something much more useful than this. With PHP,

developers are easily able to build complex applications, such as forums, picture

galleries and a whole lot more.

In this book, Jump Start PHP, we will teach you the basics to writing and developing

in PHP and will guide from building basic PHP web pages with dynamic content,

to building interactive web based applications. We'll address issues such as security,

database interaction and setting up developer environments for building your PHP

applications.

Throughout Jump Start PHP, we will work on an ongoing project, a small but robust

blogging application, which will apply the theory discussed in each chapter to a

real development scenario. This project will incorporate some useful functionality

(a front-end to display posts, comments, and administrative tools) and will hopefully

help to demonstrate the concepts we discuss throughout the book

Who Should Read This Book
Developers seeking a rapid introduction to PHP. You'll need to know HTML and

CSS, and experience with other programming languages would be useful.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout this

book to signify different types of information. Look out for the following items.

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a

⋮ will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored.

URL.open("http://www.sitepoint.com/responsive-web-design-real-user-
➥testing/?responsive1");

xii

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

Supplementary Materials
http://www.sitepoint.com/books/jsphp11/

The book’s website, containing links, updates, resources, and more.

https://github.com/spbooks/JSPHP1

The downloadable code archive for this book.

http://www.sitepoint.com/forums/forumdisplay.php?34-PHP

SitePoint’s forums, for help on any tricky web problems.

books@sitepoint.com

Our email address, should you need to contact us for support, to report a prob-

lem, or for any other reason.

xiii

http://www.sitepoint.com/books/jsphp11/
https://github.com/spbooks/JSPHP1
http://www.sitepoint.com/forums/forumdisplay.php?34-PHP

Do You Want to Keep Learning?
You can now get unlimited access to courses and ALL SitePoint books at Learnable

for one low price. Enroll now and start learning today! Join Learnable and you’ll

stay ahead of the newest technology trends: http://www.learnable.com.

xiv

http://www.learnable.com

Chapter1
Server Kick-Start

What is PHP?
PHP is the most popular sever-side scripting language in web development,

powering an estimated 78.9% of all websites.

It was created by Rasmus Lerdorf in 1995, and the name was originally an acronym

of "Personal Home Page (Tools)", although now it's better known for the recursive

acronym "PHP: Hypertext Preprocessor". The language is managed, monitored, and

developed by a group of developers known as The PHP Group, which continues to

distribute the scripting language for free through the official PHP website1.

PHP code is most commonly interpreted, processed, and rendered using a web

server with a PHP processor module installed, allowing PHP to be embedded

within HTML markup in files with the .php extension. In addition, PHP can be de-

ployed on almost every operating system and platform for free, with Linux-based

systems being the most popular choice.

1 http://php.net/

http://php.net/

Today, PHP development is mainly focused on server-side scripting rather than

general-purpose scripting tasks, and it's generally considered to be a competitor to

technologies such as Microsoft's ASP.NET, Apache Software Foundation's mod_perl

module, and Joyent's Node.js. PHP is primarily used to handle complex data pro-

cessing that allows dynamic data to appear on web pages, such as math calculations,

number crunching, and interacting with a database. It allows developers to take

what used to be static HTML content and make it responsive to users' requests, or

do the same with permanently-stored data that resides in a database.

PHP has a focus on web development, which makes it an obvious choice for de-

velopers when creating web applications or websites. Its gentle learning curve en-

ables developers to quickly start building things in PHP, while the breadth of its

features allows developers to expand their projects without resorting to another

programming language. Websites such as Digg, Etsy, Yahoo, Facebook, and Wikipedia

all use PHP to power sections of their website, including the handling and processing

of data related to their visitors.

A simple example of using PHP in a web page is displaying the number of visitors

with a counter. A database stores the number of people who have visited the web

page, and PHP is used to interact with that database and generate the HTML markup

to display the current tally. PHP can also be used to create large, complex, and

multi-level navigational websites that have many nested pages, and is commonly

used to power ecommerce websites. PHP even allows for the creation of customized

experiences for visitors using information gathered about that user.

PHP's popularity has also resulted in a huge community of developers who are

willing to offer help to anyone seeking advice and, more often than not, for free, as

well as an ever-expanding library of reference material available both online and

offline.

Setting Up
PHP is available with almost every shared-server hosting package, and it can also

be used alongside Apache HTTP Server software to create a local web server on

your home computer. PHP can also be used with your own private web server,

which can then be accessed across the Internet.

Jump Start PHP2

Local servers on home computers are often set up using the popular LAMP (Linux,

Apache, MySQL, and PHP), MAMP (Mac OS X, Apache, MySQL, and PHP), and

WAMP (Windows, Apache, MySQL, and PHP) stacks, all of which are available for

free download.

These stacks normally comprise of a one-click install program that installs a

standard web server setup with default configurations. This allows web developers

to set up a local environment that is almost identical to the one provided by their

web hosting company. Developers will often start building websites and applications

using a local server due to the ease with which they can access working files, and

do without the additional time and hassle of uploading files to an online server. In

addition, this method means there's no worry that development code will accident-

ally leak out onto the live site, and developers can also avoid using hosting band-

width for file transfers.

Getting Started
Getting a local server on your home computer may seem like it could be a complex

task, but it's generally fairly simple: a one-click install. There are several options

available, depending on which operating system you use:

Windows
With Windows, you have a choice of two popular and powerful installation pro-

grams. The first is WAMP2, a Windows program that installs Apache, PHP, MySQL,

and phpMyAdmin on your computer (phpMyAdmin is a convenient web-based

interface for working with MySQL databases). The other is XAMMP3 from Apache

Friends, a distribution containing Apache, MySQL, PHP, Perl, and phpMyAdmin.

For the purposes of this book, we'll cover setup using WAMP only, but the setup

of XAMMP follows a similar process, if you choose to install that package instead.

Your first step is to download WAMP4. You'll be given multiple download options,

so select the version that corresponds to your computer's processor and operating

system version and is "PHP 5.4 2.4".

2 http://www.wampserver.com/en/
3 http://www.apachefriends.org/en/xampp.html3
4 http://www.wampserver.com/en/#download-wrapper

3Server Kick-Start

http://www.wampserver.com/en/
http://www.apachefriends.org/en/xampp.html3
http://www.wampserver.com/en/#download-wrapper

Which Processor Do I Have?

To find out which processor you have, look for your "My Computer" icon or al-

ternatively you can head to Control Panel and select System from the options

available. Right-click on it and look for the option System Type which should state

whether your computer uses a 32 or 64-bit operating system.

Visual C++

You also need to install Visual C++ 2010 SP1 Re distributable Package x86 or x64

on your computer. The web page will give you links that correspond to your op-

erating system type (32 or 64-bit) and it's highly recommended that you download

and install the package on your computer before installing WAMP.

When the download is complete, run the installer program.

Once WAMP has been installed, you should see a new icon in the Windows system

tray. The icon for WAMP changes between three different colors that represent the

current status of its services:

■ Red – Both Apache and MySQL are offline. This could be because they haven't

been told to start yet or a fatal configuration issue is preventing them from

starting.

■ Orange – One of the services failed to start. This usually indicates a minor con-

figuration problem, such as not loading an add-on library correctly or that a de-

fault port is in use by another program. It's highly recommended that you seek

help from the product's help desk or forums should this happen.

■ Green – The services are running and no errors have occurred; all is good.

You can left-click on the WAMP icon and you will be presented with many options

for interacting with the services. These options allow you to:

■ Manage your Apache and MySQL services

■ Switch online/offline

■ Install and switch Apache, MySQL, and PHP releases

Jump Start PHP4

■ Access your log files

■ Access your settings files

■ Create aliases

Right-clicking on the icon allows you to exit the program, change the program's

language, and go to help pages located on WAMP's website. It's recommended that

if you are unsure of anything related to the WAMP stack to seek advice from the

help files on the WAMP website using the right-click option on the icon.

Port 80 Problems

The most common issue with WAMP is that port 80 (the port used to connect to

the Apache server) may already be in use by another program. If you're running

Skype while trying to start up WAMP, for example, you may encounter this error

because Skype also uses port 80. To fix it, it's recommended that you close Skype

completely and then restart WAMP. There's a solution to this issue on Stack

Overflow5.

To check that the local server is installed and configured correctly, open up your

web browser and in its address bar type localhost or 127.0.0.1. You should be

greeted with the WAMP home page.

5 http://stackoverflow.com/a/4705033

5Server Kick-Start

http://stackoverflow.com/a/4705033
http://stackoverflow.com/a/4705033

Figure 1.1. The WAMP home page

Mac OS X
For Mac users, there is a simple one-click application for setting up a local server

with PHP on your computer called MAMP. As with Windows, you can also use

XAMMP, however MAMP is the more popular choice because its development is

focused on providing a setup that's perfect for those wishing to develop websites

using PHP.

Jump Start PHP6

First, you need to download the application from the MAMP website6 and then,

once the file has downloaded, open the .pkg file which should initiate the installation

process.

MAMP Pro

MAMP may install two folders, one named MAMP and the other named MAMP

Pro. If MAMP Pro is installed on your computer, remove this folder and application.

MAMP Pro is a pay-for program, whereas MAMP is a free application.

Once that's done, you can start the MAMP program by clicking on the MAMP icon;

you should be welcomed with the splash screen.

Figure 1.2. The MAMP splash screen

6 http://www.mamp.info/en/index.html

7Server Kick-Start

http://www.mamp.info/en/index.html

On the splash screen, shown in Figure 1.2, you should see two icons on the left-

hand side of the box titled Apache Server and MySQL Server which should both have

red dots next to them. These red dots mean they haven't been started. To fire them

up, we need to hit the Start Servers button; the dots should switch to green. Shortly

after pressing the Start Servers button, your default browser should open and load

the MAMP start screen.

Figure 1.3. MAMP start screen

MAMP is now installed. However, it forces you to use port 8888 to access the Apache

server. This is not as nice as accessing the server simply typing localhost into the

browser's address bar, as WAMP allows. Luckily, there's a very simple fix for this

issue. Switch back to the MAMP splash screen and select the Preferences button.

There should be an option in the small navigation menu at the top of the panel

titled Ports.

In this window you should see an input box with the label Apache Port to the left

of it. If you change this option from 8888 to 80 you can now access the MAMP start

screen by simply typing localhost/MAMP into your browser's address bar.

Jump Start PHP8

Linux
If you're running a Linux operating system such as Ubuntu or Debian, you can use

the terminal to install the LAMP package from the system's repositories. Installing

a local server on Linux is slightly different from Windows or Mac OS X. The install-

ation method is a bit more advanced, but it allows a lot more control and freedom

when running and managing the server. In fact, the method is almost identical to

the one used to manage and run live web servers on Linux. The installation example

we'll cover here will specifically show the steps for installing LAMP on Ubuntu.

Your first step is to start the terminal program, which can be done by searching for

Terminal in Dash Menu, the first icon in the Ubuntu side menu, or by heading to

Applications > Accessories > Terminal via folder navigation.

Once you have the terminal open, you can start by installing Apache on the com-

puter. You do this by typing the following into the terminal:

sudo apt-get install apache2

Hit Enter and your terminal will start going crazy, but don't panic, this is natural.

Apache should now be installed and the basics of your local server will be set up.

To test this, open a web browser and type localhost into the address bar. If it has

installed successfully, you should be welcomed with the "It works!" splash screen

as shown in Figure 1.4.

9Server Kick-Start

Figure 1.4. Localhost on Linux

Now you'll need to install PHP, so head back to the terminal and type:

sudo apt-get install php5 libapache2-mod-php5*

PHP 5 will be installed along with the basic libraries it needs to work alongside the

Apache server you just installed. Once complete, you have to restart Apache for it

to acknowledge PHP was just installed. In the terminal, type the command below:

sudo service apache2 restart

Your Apache server will now restart, see that you have PHP installed, and will load

up all of the libraries needed to run PHP on your local sever.

Now you have your local server up and running and you have PHP installed on it.

To install MySQL and phpMyAdmin I recommend following this guide by Mhabub

Mamun.7

Finally, you have the option to enable the mod_rewrite module for Apache, which

allows developers to redirect users to different sections of the website by rewriting

the requested URLs. For a full in-depth guide for enabling and settings up the

7 http://www.developmentwall.com/install-apache-php-mysql-phpmyadmin-ubuntu/4

Jump Start PHP10

http://www.developmentwall.com/install-apache-php-mysql-phpmyadmin-ubuntu/4
http://www.developmentwall.com/install-apache-php-mysql-phpmyadmin-ubuntu/4

mod_rewrite module, please see the Nettuts+ guide8, which offers a very detailed

step-by-step tutorial.

PHP Configuration
Before we delve into writing some PHP code, let's configure PHP to better suit our

project. PHP is configured by the file php.ini, which holds all of the core settings

relating to how PHP will behave on our server. You can see a quick overview of

PHP's current configuration by using the phpinfo() function in a PHP script. To

do this, create a new file in your server folder named info.php, add the following

code to the file, and save it:

<?php
 phpinfo();

Now, point your browser to the info.php file and you should see a page that displays

a table full of information about our PHP's current configuration, as shown in Fig-

ure 1.5.

8 http://net.tutsplus.com/tutorials/other/a-deeper-look-at-mod_rewrite-for-apache/

11Server Kick-Start

http://net.tutsplus.com/tutorials/other/a-deeper-look-at-mod_rewrite-for-apache/

Figure 1.5. phpinfo()

The key thing to find here is the row titled Configuration File (php.ini) Path as this

will tell you exactly where your php.ini file is located. You can see that in Figure 1.5

my php.ini file is located at E\:wamp\bin\apache\apache2.4.2\bin\php.ini. Your path

will very likely be different from this, so use the phpinfo() function to find out

what it is.

The php.ini file contains a large amount of settings, some of which you may never

need to change. However, there are a few which can be changed to help tailor PHP

Jump Start PHP12

to suit your development style and environment. For a tour of the php.ini file, I

highly recommend reading the Tour of php.ini article I wrote for SitePoint9.

Hello PHP World
Now that you have your local server installed and running, let's start coding some

PHP! We'll start by heading to Apache's web folder, which is located in different

places depending on which operating system you are using:

■ For Windows users using WAMP, open up Explorer or My Computer and navigate

to the directory located at C:/Program Files/wamp/www/

■ For Mac OS X using MAMP, open Finder and navigate your way to Applications

> MAMP > htdocs to locate MAMP's web directory.

■ The web directory for Linux can be found in /var/www. Many Linux developers

like to edit their server's config file to change which directory is used for web

files. To do this, please see the solution on Stack Overflow10.

Once you've found your server's web directory, you need to create a directory to

act as your project's "root" directory where all your project files will be located. For

now, create a directory named my_project. I specifically avoided any spaces or cap-

ital letters in the folder's title because it will form part of the URL to access files in

this folder.

Now create a new PHP file called index.php in the my_project folder. Once this file

has been created you'll need to open it in a text editor that can edit PHP files.

Choosing a Text Editor

I recommend that you use an editor which supports syntax highlighting for PHP.

Choosing an editor is a very personal decision as different editors offer different

features; some editors will complement your way of coding and some may conflict

with it. In the end, the choice should really depend on which editor makes coding

easier and more fun for you. It's also worth trying a few different editors before

settling on your final choice.

9 http://www.sitepoint.com/a-tour-of-php-ini/
10 http://stackoverflow.com/a/5891858

13Server Kick-Start

http://www.sitepoint.com/a-tour-of-php-ini/
http://stackoverflow.com/a/5891858

Here's a short list of some of the more popular editors available. It contains a

mixture of both free and paid-for editors:

■ Adobe Dreamweaver11 – (Windows and Mac OS X)

■ One of the most well-known editors. It provides a wide range of one-click

options and has a built-in FTP client.

■ Sublime Text12 – (Windows, Mac OS X, and Linux)

■ A free-to-try editor which has some powerful shortcuts and macro com-

mands built-in.

■ Komodo Edit13 – (Windows, Mac OS X, and Linux)

■ A powerful free editor with a slick interface and built-in FTP client.

■ Coda14 – (Mac OS X)

■ A very user-friendly editor with a wide range of functionality.

■ Notepad++15 – (Windows)

■ A very popular free editor.

Once you have chosen an editor that is right for you, open index,php and you can

start to write some PHP code to the file. Type in the following code and then save

the file:

<php echo "Hello World"; ?>

Let's run this code. Open up a web browser and, in the browser's address bar, type

http://localhost/my_project/index.php. You should see something similar to

Figure 1.6.

11 http://www.adobe.com/products/dreamweaver.html
12 http://www.sublimetext.com/
13 http://www.activestate.com/komodo-edit
14 http://panic.com/coda/
15 http://www.notepad-plus-plus.org/

Jump Start PHP14

http://www.adobe.com/products/dreamweaver.html
http://www.sublimetext.com/
http://www.activestate.com/komodo-edit
http://panic.com/coda/
http://www.notepad-plus-plus.org/

Figure 1.6. Hello, world!

Congratulations! You've just written your first piece of PHP code! As you can see,

the code displays the phrase "Hello World" in the web browser, but what exactly

have you typed into your PHP file? Let's break down our line of code:

■ <?php : This is called the opening tag. It tells your server that the code that follows

is intended to be interpreted as PHP, and that the server should use the PHP

engine to render the code. This tag must be entered every time you want to use

PHP code in your file.

■ echo "Hello World"; : echo is a basic PHP construct which tells PHP that what

follows the echo command is something you want to appear in the browser.

Quotation marks are added around the text you want to display on screen. Also,

you add the important semicolon afterward which signals that your echo state-

ment is finished.

■ ?> : This is the closing tag for PHP and tells the server to stop rendering PHP

code. The closing tag is not always used. Leaving the code "unclosed" can prevent

unintended content from being sent to the browser. Skipping the closing tag

when you don't need it can avoid problems which may crop up as you start

writing more complex PHP code. Further on in this book you'll see code that

doesn't have a closing PHP tag. This tag has been omitted on purpose.

15Server Kick-Start

Use Your Semicolons!

It's very important to remember to add a semicolon at the end of all PHP statements

because PHP will not know where one statement ends and the next statement

begins without it.

PHP files also let you combine PHP code with regular HTML. If you combine PHP

and HTML together you can create really nice looking web pages that contain dy-

namic and complex data, which HTML cannot process and handle on its on.

Here's a quick example of HTML and PHP working together:

<!DOCTYPE html>
<head>
 <title>PHP and HTML working together</title>
 </head>
 <body>
 <h1><?php echo 'This is a H1 tag with PHP data'; ?></h1>
 <p><?php echo 'This is a P tag with PHP data also'; ?></p>
 </body>
</html>

If you change the contents of the index.php file to the example above and navigate

back to http://localhost/my_project/index.php, you'll see the HTML code dis-

play all the code processed by PHP correctly in your browser.

PHP Variables
Let's take our code to the next level and explore the world of variables. A variable

represents a place in the computer's memory where we can temporarily store bits

of information. We can assign some piece of data to a variable (place the data in

memory) and use that variable throughout our script. Each time PHP sees the variable

in our code, it knows to access the data that it represents. The data we assign to a

variable can be anything from a simple string of text such as "Hello World", or

numbers like "1234", through to more complex data structures, which we'll cover

shortly.

Variable names are always prefixed with the $ symbol. Their names cannot contain

spaces and must only contain letters (lower and upper-case), numbers, and under-

scores. In addition, the first character in the name after the $ must be a letter or an

Jump Start PHP16

underscore. Acceptable variable names could be $myAwesomeVariable, or even

$my_Awesome_Variable_1.

It's considered good practice to give your variables meaningful names so that if an-

other developer reads the code you've written they have a clue as to what data it

represents. For example, if we wanted a variable to hold data about someone's name

we could call our variable $personName.

Use CamelCase

If your variable has more than one word in its name, it's common practice to give

the start of each word a capital letter. This improves readability when scanning

through code.

Let's take a look at a variable in use. Modify index.php as follows:

<?php
$myVar = 'Hello World, this is using a variable';
echo $myVar;

So what have we coded here? First, we assigned a value (the string "Hello World,

this is using a variable") to the variable $myVar. As this is the first time we have

used the variable $myVar, it is created automatically by PHP. Now if we write $myVar

anywhere in the PHP script, PHP will know to load the data we've assigned to that

variable.

If you reload the index.php file again in your browser, you should see that our string,

"Hello World, this is using a variable", is displayed.

Expanding on this code, let's go ahead and change index.php file again so it looks

like this:

<?php
$myVar;
$myVar = 'Hello World, this is using a variable';
echo $myVar;
$myVar = 'Goodbye World';
echo $myVar;

17Server Kick-Start

Refresh the page again and you should see both sentences, "Hello World, this is

using a variable" and "Goodbye World", appear on the screen. This is because we

can overwrite the data in a variable at any time.

The example above also shows how PHP processes and renders our code line-by-

line from the top down. Our first echo statement shows the first sentence because,

at that point, the variable $myVar holds that sentence. However, after the first echo

statement, we overwrite it with our second sentence. It's important to remember

the "top-down" rule when you are planning what you want your PHP script to do

with certain pieces of data at certain points within your script. If you overwrite a

variable's data before you plan to use it, that data will be gone and the script's output

will be incorrect.

We can store store more than just strings and sentences in our PHP variables; let's

have a quick look at the different types of data we can use:

<?php
$myVar = 0; // Integer
$myVar = 3.14; // Float
$myVar = "Year to Date"; // String
$myVar = true; // Boolean
$myVar = array(250, 300, 325, 475); // Array

In the code above we have used a wide variety of variables types, so let's have a

quick run through them:

■ Integer – Whole numbers. These can be either positive or negative.

■ Float – Numbers with decimal places. These can also be either positive or negat-

ive.

■ String – A mixture of letters, numbers, and symbols. Strings are surrounded by

quotes.

■ Boolean – One of two values: true or false. The value must not have any quotes

as this would turn it into a string.

■ Array – A multi-level storage type, similar to a table.

Jump Start PHP18

For a full run-down of what these types allow us to do in PHP and examples of the

amazing things we can do with them, check out a few of these articles and tutorials:

■ http://www.php.net/manual/en/language.variables.basics.php

■ http://www.sitepoint.com/variables/16

■ http://goldhat.ca/blog/php-beginner-lesson-using-variables

Arrays
For more complex ways of storing data in memory we have the option of using an

array, which represents data just like a table. Let's begin with the table shown in

Figure 1.7.

Figure 1.7. A simple array

We can write this table as an array in PHP like so:

<?php
$myArray = array('item1' => 'My Value');

What we've done here is create an array named $myArray by using the array()

construct to define our value, rather than just a string or integer. Then we added a

"key", which we named "item1" and set the value "My value" to that key by using

the => symbol. This => symbol is PHP's way of denoting that the data following the

symbol will be stored in a place in memory that can be referenced from the array

by that key.

We can add more than one key/data pair to our array when we define it as shown

in the following:

<?php
$myArray = array('item1' => 'My Value', 'item2' => 'Another value');

16 http://www.sitepoint.com/variables

19Server Kick-Start

http://www.php.net/manual/en/language.variables.basics.php
http://www.sitepoint.com/variables
http://goldhat.ca/blog/php-beginner-lesson-using-variables

Another option is that we could've created an empty array and added our key and

value later in the following manner:

<?php
$myArray = array();
$myArray['item1'] = 'My Value';
$myArray['item2'] = 'Another value';

Since PHP 5.4, we've had the ability to use a shorthand notation for creating an array

rather than the traditional array(). The shorthand approach looks like this:

<?php
$myArray = ['item1' => 'My Value', 'item2' => 'Another value'];

Arrays allow us to work with some very complex data and we'll be returning to

them later on in the book. In the meantime, to check out the basic usage of arrays I

recommend having a look over following articles:

■ http://www.php.net/manual/en/language.types.array.php

■ http://www.sitepoint.com/introduction-to-php-arrays/

■ http://www.htmlandphp.com/beginner-php/207-introduction-to-arrays-in-

php.html

Comments
We can write comments to ourselves in our PHP code. Comments are not processed

as statements by PHP. We start a comment by using two forward slashes // ― any-

thing written on the same line after the slashes will be considered to be a comment

and won't be processed. For example:

<?php
// this is a PHP comment for this line only

We can also use /* to signal the beginning of a comment that spans multiple lines

ending with */ to mark the end of the comment. For example:

Jump Start PHP20

http://www.php.net/manual/en/language.types.array.php
http://www.sitepoint.com/introduction-to-php-arrays/
http://www.htmlandphp.com/beginner-php/207-introduction-to-arrays-in-php.html
http://www.htmlandphp.com/beginner-php/207-introduction-to-arrays-in-php.html

<?php
/* this is the beginning of our PHP comment.
It can go on for multiple lines until we end the comment.
We will end it now. */

Comments allow developers to leave notes to anyone reading their code, giving in-

sight into how it works and making it easier to maintain.

Comments also allow us to temporarily hide segments of code ("comment out" code).

We might do this with code that isn't yet complete and would cause an error if it

was processed.

Preparing Our Project
To conclude this chapter, let's quickly lay out the directory structure for this book's

project. We'll be developing a basic blog application powered purely by PHP and

a MySQL database to store all our data, such as post content. The application will

consist of a public front-end, displaying a list of blog posts, and an admin panel

that will enable us to manage our blog's content.

For now, we need to create a new folder in our web directory, which we'll call

kickstart. Inside this directory we need to make three more directories: one named

admin, another named frontend, and the last one named includes as shown in Fig-

ure 1.8.

Figure 1.8. Our project folders

The admin directory will house the files used for the admin panel functionality.

The frontend directory will hold all the files used for the public side of the blog to

21Server Kick-Start

work. This public side is where visitors will be able to view blog posts, and the files

will load the blog data for display in the visitors' browsers. The includes directory

is where we'll place any scripts which have functionality that can be used in both

the admin section and the public section.

We also need to create a directory inside both the admin and frontend directories

named templates. The directory templates which will hold all the PHP and HTML

files that will accept data from scripts and files in the functions folder. These tem-

plate files will ultimately format our data from PHP and create the layouts that our

visitors will interact with in the front-end. The same template files will also create

the layouts which we'll use to manage the blog in the admin section. Further on in

the book we'll go into templating in greater depth and learn why exactly we're using

it for our project.

Separating out these folders like this is helpful because it'll help you to develop

cleaner and better-organized code.

Summary
In this chapter we've covered the basics of setting up a web server, introduced PHP

coding by displaying text, and used variables to store PHP data. Everything covered

in this chapter is an introduction and we'll be coming back to some of the topics

we've touched on here later in the book.

In the next chapter we'll be looking at how we can use permanent storage options

such as a database with our scripts and how we can use the visitor's browser to

store small amounts of data as well.

Jump Start PHP22

Chapter2
PHP & Data
Data is the lifeblood of PHP. In this chapter, we'll look at one of the many options

that PHP offers to developers in terms of processing data and using permanent

storage solutions—interacting with a MySQL database. In addition, we'll briefly

explore some important programming concepts, like conditional statements and

loops, which become necessary when reading data back from a database. So get

ready and roll up your sleeves; we're going to dive deep into the world of PHP data

handling!

Operators
In PHP, just as in almost all programming languages, operators are used to manip-

ulate or perform various operations on variables and values. The most basic operator

is =, which as we saw in Chapter 1 is used to assign a value to a variable. But there

are many other powerful operators to discover.

To begin, let's create a new file named op_experiments.php in the my_project folder

that we created previously. In this file, add the following code:

<?php
$firstName = "myfirstname";
$lastName = "mylastname";
$fullName = $firstName . $lastName;
echo $fullName;

While most of this code probably looks pretty straightforward, the line $fullName

= $firstName . $lastName; may take you slightly by surprise, especially the little

period that sits between two of the variables.

The period is PHP's string concatenation operator; it joins two strings together to

make one longer string. PHP takes the string value of $firstName, adds the value

of $lastName to it, and places the result in the variable $fullName. When we run

the script and PHP outputs the value of $fullName, we will see myfirstnamemylast-

name displayed in the browser.

Figure 2.1. The output of our experiment

It's not very readable though, is it? No worries. We can easily tweak the code a little

to make the output more readable. Modify the code so it looks like the following:

<?php
$firstName = "myfirstname";
$lastName = "mylastname";
$fullName = $firstName . " - " . $lastName;
echo $fullName;

Now we can see the separation between our two names when we view them in the

browser. Cool.

Jump Start PHP24

Figure 2.2. The output after adding some spaces

Conditional Statements
PHP also has operators that allow us to compare values. For example == checks to

see if two values are the same, < if a value is less than another, and > if a value is

greater than another.

Most of the time we use these comparison operators to write conditional statements

(statements that may or may not execute depending on the result of a comparison)

and loops (statements that execute multiple times over).

if Statement
An if statement consists of a condition and one or more statements grouped as a

block. If PHP evaluates the condition and finds it to be true, then it will execute the

block of statements. If the condition is false, then PHP will skip the block. In the

example below, PHP checks to see if the value of $a is equal to $b. If so, it displays

"A is equal to B" on the screen:

<?php
if ($a == $b) {
 echo 'A is equal to B';
}

else Statement
A partner to the if statement, an else statement can directly follow an if statement.

PHP executes the code that makes up the else's block only if it skipped that of the

if statement. In the example below, PHP checks to see if the value of $a is equal to

$b. If so, it displays "A is equal to B" on the screen: If that test fails, PHP executes

25PHP & Data

the code in the block after the else statement and prints "A is not equal to B" to the

screen.

<?php
if ($a == $b) {
 echo 'A is equal to B';
} else {
 echo 'A is not equal to B';
}

elseif Statement
Another partner is the elseif statement. As its name suggests, elseif is a combin-

ation of if and else. It has a condition, and PHP checks the condition if the if

condition was found to be false.

Multiple elseif statements can be used together to test for different conditions,

and PHP checks each one until one of the conditions is found to be true. Once a

true condition is found, PHP will skip the rest of the elseif statements in the chain.

<?php
if ($a == $b) {
 echo 'A is equal to B';
} elseif ($a == $c) {
 echo 'A is equal to C';
} elseif ($a == $d) {
 echo 'A is equal to D';
} else {
 echo 'A is not equal to anything';
}

switch Statement
If you take a closer look at our elseif example you may notice that each condition

basically tests for the same thing—whether the value of some variable is equal to

the value of $a. PHP's switch statement can do something similar, and also looks

a bit less cluttered.

switch ($a) {
 case $b:
 echo 'A equals B';

Jump Start PHP26

 break;
 case $c:
 echo 'A equals C';
 break;
 case $d:
 echo 'A equals D';
 break;
 default:
 echo 'A is not equal to anything';
 break;
}

In the example above, PHP takes the value provided at the start of the switch (the

value of $a) and compares it to the value of each case. The matching clause is the

one that is executed. The default case is executed if none of the other cases match.

Once PHP finds a matching clause, it starts executing the code below and continues

until it sees the break keyword, after which it will jump to the end of the switch

statement and merrily continue on executing the rest of our script.

Watch for the Break

PHP doesn't see the start of one case as the end of the previous case, which is

why the break keyword is necessary. This might be confusing at first, and there

will be likely be times that you forget to use break and your scripts don't do what

you intend, so it's important to keep this in mind.

This behavior also means that we can write code that executes for multiple cases,

like so:

switch ($a) {
 case $b:
 case $c:
 case $d:
 echo 'A equals B, C, or D';
 break;

27PHP & Data

 default:
 echo 'A is not equal to anything';
}

Conditional statements give us the ability to write dynamic scripts that execute

differently according to different circumstances. I encourage you to practice writing

some conditional statements of your own, and to read the official PHP documenta-

tion1.

Loops
Loops in PHP allow us to write one set of statements and have them execute multiple

times over. For example, suppose we want to display all of the numbers counting

from 1 to 100. Of course we could write 100 lines of code, each using echo to output

a different number, but a better way would be to write a loop that repeatedly executes

a single echo statement but with a number that increments each time until all 100

numbers are displayed.

for Loop
The for loop is a generic looping mechanism that uses a variable to keep track of

its progress and has four main parts: variable initialization (setting a tracking variable

or counter to a known starting value), condition (PHP will continue to execute the

loop as long as this condition holds true), an increment or decrement (adjusting the

value of the counter to mark the progress of the loop), and a block of statements to

repeat over.

While that might seem complex and lengthy, it's really quite succinct in code, as

this example shows:

for ($i = 1; $i < 101; $i = $i + 1) {
 echo $i . '
';
}

So how does PHP execute this code? Well, it starts by setting the variable $i with

the value of 1. Then it looks at the condition and determines that 1 is indeed less

1 http://www.php.net/manual/en/language.control-structures.php

Jump Start PHP28

http://www.php.net/manual/en/language.control-structures.php
http://www.php.net/manual/en/language.control-structures.php

than 101 and executes the loop's block. The block only has one statement in our

example, echo which outputs "1" followed by an HTML line break tag. After it ex-

ecutes all of the statements in the block, PHP goes back up to the start of the for

loop to execute the third part, $i = $i + 1. This has the effect of updating our

tracking variable to 2. Again the condition is checked, 2 is less than 101, and the

block is executed. This time around, echo outputs the value "2". PHP keeps repeating

the loop until $i reaches 101 (which makes the condition false because the value

of $i is then equal to, not less than, 101) and then breaks out of the loop.

while Loop
while loops work in an almost identical fashion to for loops, with the exception

being that they only require the condition at their start. It's our responsibility as

programmers to set the initial value of our tracking variable before the start of the

loop and then adjust it within the loop's statements.

$i = 1;
while ($i < 101){
 echo $i . '
';
 $i = $i + 1;
}

PHP first sets $i to 1 in our first statement, and then starts the while loop as our

second. It checks the condition (which is true) and continues to execute the two

statements that make up the loop's body; the value of $i is outputted and then in-

creased in preparation for the next round of execution.

Have an Escape Plan

An all-too-common mistake when working with loops is to forget to adjust the

counter. If the value never changes then the condition will always stay true; the

loop will never stop repeating! When you write a loop, always make sure that

you've a way for it to stop at some point.

foreach
Where the for and while loops made use of an explicit condition, PHP's foreach

loop operates in a different way. It takes a multi-key variable (an array for example)

and executes a set of statements for each element.

29PHP & Data

$myArray = array('Hello', 'World');
foreach ($myArray as $value) {
 echo $value . '
';
}

For each member in the array $myArray, PHP assigns its value to the $value variable

making it available to statements that make up the loop's body.

There's a second variation on the foreach loop that's handy to know. We can also

access the key of the current element along with the value if we write it like so:

$myArray = array(1 => 'Hello', 2 => 'World');
foreach ($myArray as $key => $value) {
 echo $key . ': ' . $value . '
';
}

For more information on while, for, and foreach loops, please see the PHP official

documentation2 as well as the resources below:

■ http://www.sitepoint.com/loops/

■ http://webcheatsheet.com/PHP/loops.php

Databases, MySQL, and PHP
When we create a PHP web application, more often than not we require some of

the data created in our script to be saved somewhere for future access. A database

allows us to store large amounts of different types of data, from large alphanumeric

strings to serialized arrays. MySQL is the most popular open source database

available, and it works incredibly well with PHP to store our application's data. It's

very easy to get up and running and only requires a few functions to store and re-

trieve data.

Traditional databases like MySQL use tables, rows, and columns to organize data.

Each table holds a set of records (user information, order summaries, etc.), each row

in a table stores a specific record, and each column identifies a different piece of

data that makes up the record. A database table can be envisioned like Figure 2.3.

2 http://www.php.net/manual/en/language.control-structures.php

Jump Start PHP30

http://www.php.net/manual/en/language.control-structures.php
http://www.php.net/manual/en/language.control-structures.php
http://www.sitepoint.com/loops/
http://webcheatsheet.com/PHP/loops.php

Figure 2.3. A database table

Think About Data Types

Since each column in a table is only allowed to store one type of data, and this is

often part of the column's definition, it's important to think about the different

properties of the data that you'll be storing beforehand.

Before continuing, it's important that you're familiar yourself with the purpose of

databases and the basics of MySQL. If you're unsure about any of that, please read

the MySQL article on tizag.com3.http://www.tizag.com/mysqlTutorial

There are two extensions for working with MySQL in PHP—MySQLi and PDO.

We're going to use the PDO extension to connect to and interact with our MySQL

database, so make sure the extension is installed and enabled. Open the file info.php

we wrote in Chapter 1, look for the section titled PDO, and make sure that MySQL

is listed in the enabled column.

Problems Installing PDO

If you have problems enabling the extension, check out the PHP Manual's guide

to installing PDO4.

The highly popular phpMyAdmin is a PHP application that makes managing multiple

databases a breeze. With this in mind, it's highly recommended that you make sure

that phpMyAdmin is installed on your server. We'll be using it to manage our

database throughout this book.

3 http://www.tizag.com/mysqlTutorial
4 http://php.net/manual/en/pdo.installation.php

31PHP & Data

http://www.tizag.com/mysqlTutorial
http://www.tizag.com/mysqlTutorial
http://php.net/manual/en/pdo.installation.php
http://php.net/manual/en/pdo.installation.php

To get started, we need to create a new empty database using phpMyAdmin. To do

this, open your installation of phpMyAdmin in your browser and log in. You should

be welcomed with a screen similar to the following:

Figure 2.4. phpMyAdmin

Next, click on the Databases link in the top menu. In the next screen we can create

our new database by typing the name of the database we want to use. For our project,

let's type "kickstartapp" into the text field and hit the create button.

Jump Start PHP32

Figure 2.5. Creating our databases

Collation?

Don't worry about the drop-down option which should be preselected to "Colla-

tion". This is a more advanced feature and, for the purposes of the book's project,

we'll be sticking to the default options. If you'd like to read up about database

collation types, please see:

■ http://dev.mysql.com/doc/refman/5.0/en/charset-collation-implementa-

tions.html

■ https://kb.mediatemple.net/questions/138/Default+MySQL+charac-

ter+set+and+collation#gs

Take Care When Naming your Databases

When we create a database, its name cannot contain slashes, periods, or other

characters that are not permitted in file names, and should not contain spaces.

33PHP & Data

http://dev.mysql.com/doc/refman/5.0/en/charset-collation-implementations.html
http://dev.mysql.com/doc/refman/5.0/en/charset-collation-implementations.html
https://kb.mediatemple.net/questions/138/Default+MySQL+character+set+and+collation#gs
https://kb.mediatemple.net/questions/138/Default+MySQL+character+set+and+collation#gs

Those with a keen eye may have noticed that our newly created database has been

added to the list of accessible databases. This list on the left-hand menu is a collec-

tion of quick links that we can use to select which database we want to edit or

manage. Find the new database "kickstartapp" in the list and click on it. This will

take us to a new screen which will look fairly empty and similar to Figure 2.6:

Figure 2.6. Our new database

This is the main area of phpMyAdmin where we can create tables and edit existing

ones for our database. But before we do this, we need to create a user account which

will be used to connect to the database and store and extract our data.

Head to the Privileges option in the top menu and click on it, then, in the new panel,

select Add User, as shown in Figure 2.7.

Jump Start PHP34

Figure 2.7. Adding a new user

Now we just need to enter a user name into the field User name (make sure use text

field is also selected from the drop-down menu), select local in the Host drop-down

and then enter a password into the password fields (again making sure use text field

is selected). Next, scroll down and make sure Grant all privileges on database kick-

startapp is checked in the next option area in the panel. Finally, select Check all under

Global privileges in the final panel and hit Add User at the bottom of the panel.

35PHP & Data

Figure 2.8. New user fields

That might seem a bit complex, but actually all we did was create a new user and

then give that user the right to do anything to the database "kickstartapp". This setup

is the most common for users of databases, but not necessarily the most secure. You

can change the user privileges to be more restrictive if you like. For more information

on setting up database users, please see:

■ http://dev.mysql.com/doc/refman/5.1/en/adding-users.html

■ https://kb.mediatemple.net/questions/788/HOWTO%3A+GRANT+priv-

ileges+in+MySQL#dv

Now that we have a user account set up, let's create a table in our database. Create

a new PHP script in our project folder named setup.php. In this file, add the following

code and then save and run the file through the browser.

Customize Your Code

Replace the text USERNAME and PASSWORD in the following code with the username

and password you set when you created your user for the database.

Jump Start PHP36

http://dev.mysql.com/doc/refman/5.1/en/adding-users.html
https://kb.mediatemple.net/questions/788/HOWTO%3A+GRANT+privileges+in+MySQL#dv
https://kb.mediatemple.net/questions/788/HOWTO%3A+GRANT+privileges+in+MySQL#dv

<?php
$db = new PDO("mysql:host=localhost;dbname=kickstartapp",
➥ "USERNAME", "PASSWORD");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
try {
 $queryStr = "CREATE TABLE users (id INTEGER NOT NULL
➥AUTO_INCREMENT PRIMARY KEY, name VARCHAR(40), password
➥VARCHAR(100), email VARCHAR(150))";
 $db->query($queryStr);
} catch (PDOException $e) {
 echo $e->getMessage();
}

First we connect to MySQL on from PHP by creating a PDO object with four key

pieces of information. The first tells PHP where our MySQL database is located. In

our case, this is "localhost" as the MySQL server is running on the same system that

PHP is running on. The second identifies which database we want to connect to.

Together, these two bits of information are combined with mysql: to create what is

called a DSN, or Data Source Name. The third and fourth arguments are simply the

username and password for the database user we created.

Next we set a feedback option for PDO that causes any database errors to be treated

as exceptions by PHP. With this, if anything goes wrong when MySQL tries to execute

the SQL we provide, we'll be alerted immediately, and will be able to see what

happened so we can fix it.

Then we define the SQL statement that will create the table and assign the string

to the variable $queryStr. Looking at the SQL, we're telling MySQL to create a new

table named users which we'll use to store all of the data related to both admin

users and public users for our blogging application. This is done with the CREATE

TABLE command followed by the definitions for the different columns we want in

our table: id, name, password, and email. Each column definition tells MySQL what

type of data the column will hold as well as any other options for that cell. For ex-

ample, the first column (id) will hold only integer numbers and a record will never

be allowed to have an empty value for it (NOT NULL).

Next we have a type of conditional statement that we haven't discussed yet: a

try...catch block. In the try block, we pass the $queryStr variable to the query()

method of the PDO object. The method takes our SQL string and sends it to the

MySQL server to be executed.

37PHP & Data

PHP executes code in a catch block only if there was a problem in the try block.

That is, PHP will "throw" an exception if MySQL fails to run our query (we asked

for this behavior by setting PDO::ATTR_ERRMODE earlier). Our catch block will "catch"

the exception object which has information we can use to troubleshoot the problem.

Go ahead and access setup.php file through your browser. If the screen remains

blank, the query executed successfully (we only asked PHP to output anything if

there was a problem). Then head back to phpMyAdmin and click on the database

to verify that the newly created table exists.

Now let's add some data to our table! Create a new file in the project directory named

insert.php and add the following code to it:

<?php
$db = new PDO("mysql:host=localhost;dbname=kickstartapp",
➥ "USERNAME", "PASSWORD");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
try {
 $queryStr = "INSERT INTO users (username, password, email)
➥VALUES ('admin', MD5('admin'), 'youremail@domain.com')";
 $db->query($queryStr);
} catch (PDOException $e) {
 echo $e->getMessage();
}

Much of the code is the same as before, except the SQL we're sending to MySQL is

now an INSERT INTO command. We're asking MySQL to create a new record in the

users table with the username "admin", a password hash, and an email address.

Using MD5

Notice that for the password column we used the MD5() function to hash the

data. This is done for security reasons so that anyone who gains unauthorized

access to our database cannot easily view our users' passwords. Never store pass-

words in plain text!

Navigate to the insert.php file and you should again hopefully see a blank page

meaning the query has executed successfully, otherwise you will see a error message

giving insight into what went wrong. Head back to phpMyAdmin and look inside

Jump Start PHP38

the users table inside the kickstartapp database by clicking on the table's name.

You should see that the data has been inserted into the table.

Finally, let's retrieve data from the table in a different PHP script. Create the file

getdata.php and add the following code:

<?php
$db = new PDO("mysql:host=localhost;dbname=kickstartapp",
➥ "USERNAME", "PASSWORD");
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
try {
 $queryStr = "SELECT * FROM users";
 $query = $db->prepare($queryStr);
 $query->execute();
 while ($row = $query->fetch()) {
 echo $row['id'] . ' - ' . $row['name'] . ' - ' .
➥$row['email'] . ' - ' . $row['password'];
 echo '
';
 }
 $query->closeCursor();
} catch (PDOException $e) {
 echo $e->getMessage();
}

Again, a lot of this code should look familiar, but this time we're sending a SELECT

command to MySQL, which means we'll be receiving data back from the database.

The command, as we've written it, selects all columns of all of the rows in the users

table.

The prepare() method prepares the query to be sent to the database and returns a

statement object which we assign to the variable $query. This statement object has

methods which we can use to access the records that are returned by MySQL. Then

the execute() method tells PDO to send the query to MySQL, and we're off and

running.

The statement object's fetch() method returns one record from the database as an

array each time it's called (each of the columns become a member in the array, and

the column names are used as keys to access the data). When there are no more re-

cords to return, fetch() returns a Boolean false.

39PHP & Data

Each time the while loop is executed, we assign the database record that was re-

turned from fetch() to the variable $row, and the result of the assignment is used

as the loop's condition. When a record is returned, PHP considers that a true condi-

tion and executes the loop's statements. When fetch() returns false because there

are no more records to process, PHP considers that a false condition and stops re-

peating the loop.

Finally, we call the closeCursor() method which clears out the connection we

had between PHP and MySQL for the query and frees the memory used by PHP to

receive the result set. This method isn't always required, but it's good practice and

I highly recommend using it every time you finish receiving data from a query with

PDO.

If we take to our browser and navigate to getdata.php we should see all of the data

that's in the users table. If there is an error in either the PHP code or in the SQL

sent to MySQL, you'll see a message which should give you some hint as to how to

fix the issue.

Summary
In this chapter we've covered the basics of creating a database using phpMyAdmin,

creating a table in PHP using MySQL commands, inserting a record, and retrieving

rows of data from a table. However, this is only the tip of the iceberg. Both MySQL

and PHP go so much deeper than what we've seen here. For more information on

MySQL and using MySQL with PHP, please see the following resources:

■ http://dev.mysql.com/doc/

■ http://www.sitepoint.com/migrate-from-the-mysql-extension-to-pdo/

■ http://www.php.net/manual/en/book.pdo.php

■ http://www.sitepoint.com/avoid-the-original-mysql-extension-1/

Jump Start PHP40

http://dev.mysql.com/doc/
http://www.sitepoint.com/migrate-from-the-mysql-extension-to-pdo/
http://www.php.net/manual/en/book.pdo.php
http://www.sitepoint.com/avoid-the-original-mysql-extension-1/

Chapter3
Objects and OOP
In this book, we'll be using the Object Oriented Programming (OOP) paradigm.

With OOP, we can create "objects" that combine data and the functions that operate

on that data together. Because objects in OOP collect data and the functions that

work on them in one place, we keep our code organized and can better manage

complexity as our application grows.

The code that we write to define an object is called a class. One way to better under-

stand the relationship between classes and objects is to think of a home builder.

The builder—PHP for our purposes—follows a blueprint (a class) to build a house

(an object).

Just as a builder can construct several houses using the same blueprint, so too can

PHP create multiple instances of an object. Each house has the same layout, but

may be painted differently and obviously will have different families living in it.

In PHP, each object created from the same class has the same functionality, but its

properties and data that "live" inside the object are unique to that instance.

OOP may seem complex at first glance, but it's actually a very straightforward ap-

proach to programming. For more information about the theory behind OOP, please

see Lorna Mitchell's video introduction to OOP in PHP on sitepoint.com.1

First Steps in OOP
Let's write a small OOP example together. Suppose we want to represent a dog as

an object in our PHP code. We'll need to write the definition for the object (class)

that describes what the dog can do.

Create a new file named Dog.php in your experiments folder with the following

content:

<?php
class Dog
{
 public $name;

 public function __construct($name) {
 $this->name = $name;
 }

 public function speak() {
 return 'Woof! Woof!';
 }
}

Let's create another file in the experiments folder, DogTest.php.

<?php
require 'Dog.php';

$dog = new Dog('Fido');
echo 'The dog\'s name is: ' . $dog->name . '
';
echo 'The dog says: ' . $dog->speak() . '
';

Navigate to the DogTest.php file in your browser and you should see the dog's name

and barking on your screen. Great stuff.

1 http://www.sitepoint.com/object-oriented-php-lesson-1/

Jump Start PHP42

http://www.sitepoint.com/object-oriented-php-lesson-1/

Including Code From Other Files

The require construct seen in the example above—in a nutshell—imports the

contents of an external PHP file into our DogTest.php file. It's one of four such

constructs used to include code from other files, each with slightly different beha-

vior:

■ include ― includes the contents of the file. If the file isn't found or is inac-

cessible, PHP will issue a warning but will continue executing.

■ include_once ― the same as include, but PHP performs an extra check to

make sure the file hasn't been imported already. If it has, then PHP will not

re-include the contents.

■ require ― similar to include but PHP will stop execution with a fatal error

if the file isn't found.

■ require_once ― the same as require but with an extra check to ensure the

content isn't imported more than once.

Taking a look at our Dog.php file, the first thing we notice is the class keyword.

This keyword basically states that the following code defines a class that will be

known by the name that follows it (in our case, Dog). Once the class is defined, we

can create an object from it using new Dog.

The methods __construct() and speak() are part of the class definition. __con-

struct is a name that has special meaning to PHP; when we create a new object

from the class, PHP looks to see if a __construct() method is defined. If so, it will

automatically execute this method after it creates an instance of the object. This

makes it a great place to put any code that is responsible for initializing a new object.

Functions and Methods

Functions that belong to a class are called methods. There's little difference

between a function and a method, so it's safe to imagine the word "function" every

time you see "method" if it helps your understanding.

A class can have its own set of variables that help the object instance maintain its

state, and which are accessible to its methods. The line public $name; in our

Dog.php example above defines $name as a class variable, or property.

43Objects and OOP

Variables and Properties

Variables that belong to a class are called properties. Like functions/methods, it's

safe to imagine the word "variable" every time you see "property" until you become

comfortable with OOP terminology.

When we're writing code inside a class, the special variable $this represents the

instance of the object, and helps us to resolve a method or property correctly. To

better understand how this works, let's update the DogTest.php file so it looks like

this:

<?php
 require 'Dog.php';

 $fido = new Dog('Fido');
 echo 'The dog\'s name is: ' . $fido->name . '
';
 echo 'The dog says: ' . $fido->speak() . '
';

 $fifi = new Dog('Fifi');
 echo 'The dog\'s name is: ' . $fifi->name . '
';
 echo 'The dog says: ' . $fifi->speak() . '
';

We've changed the variable $dog to be named $fido instead, and created another

instance of a Dog object with the name "Fifi". When you run the code, you should

see both Fido and Fifi barking on your screen. But let's think about what's happening

behind the scenes here to make this work.

Each object is of the same class (Dog), but each is its own distinct instance with its

own data—for example, each has its own $name property. When the $fido instance

is created, the name "Fido" is assigned to it's $name variable, whereas the name "Fifi"

is assigned as the name of the $fifi instance.

Watch the Arrows

When calling a method or property, you need to remember to use the -> operator.

This lets PHP know you're referencing something that specifically belongs to the

class instead of a regular variable or function in the execution scope of the script.

Keep this in mind when calling methods or variables because calling the wrong

thing can cause unpredictable results in your PHP scripts!

Jump Start PHP44

Extending Classes
Now you have a very basic understanding of OOP, so let's recap briefly. A class is

a definition that groups variables and functions together into a logical unit, and a

specific instance in memory that was created based on the class is called an object.

Obviously, though, there's more to OOP than just this. Another important aspect is

the ability to extend a class in order to add or improve functionality without having

to re-code the aspects of it that stay the same.

To understand inheritance—creating a new class by extending an existing class—let's

create the Pet.php file with the definition of a Pet class. This will serve as a base

class, which we will then extend with other classes to make specific types of pets,

such as a dog, cat, fish, lizard, etc.

<?php
class Pet
{
 public $name;

 public function __construct($name) {
 $this->name = $name;
 }

 public function speak() {
 return 'nothing';
 }
}

This class is intentionally very similar to our Dog class, so there shouldn't be anything

too surprising here. Now let's re-write the Dog class so that it extends Pet and reuses

its functionality.

<?php
require_once 'Pet.php';

class Dog extends Pet
{
 public function speak() {
 return 'Woof! Woof!';
 }

45Objects and OOP

 public function plays() {
 return 'fetch';
 }
}

And just for fun, let's create a few more animal classes. Create the file Cat.php:

<?php
require_once 'Pet.php';

class Cat extends Pet
{
 public function speak() {
 return 'Meow!';
 }

 public function plays() {
 return 'chase mice';
 }
}

... and the file Fish.php:

<?php
require_once 'Pet.php';

class Fish extends Pet
{
}

Now let's test them out. Create the file PetTest.php with the following code:

<?php
require 'Dog.php';
require 'Cat.php';
require 'Fish.php';

$fido = new Dog('Fido');
echo 'The dog\'s name is: ' . $fido->name . '
';
echo 'The dog says: ' . $fido->speak() . '
';
echo 'The dog plays: ' . $fido->plays() . '
';

$mittens = new Cat('Mittens');

Jump Start PHP46

echo 'The cat\'s name is: ' . $mittens->name . '
';
echo 'The cat says: ' . $mittens->speak() . '
';
echo 'The cat plays: ' . $mittens->plays() . '
';

$bubbles = new Fish('Bubbles');
echo 'The fish\'s name is: ' . $bubbles->name . '
';
echo 'The fish says: ' . $bubbles->speak() . '
';

Now things are starting to get interesting! Go ahead and create classes that define

a Parrot class and a Lizard class, and update PetTest.php to create an instance of

each, display their names, and what they might say.

When we extend a class, we are basically building one class from another. This

creates a parent/child relationship. For example, we can say the Dog class is a child

of Pet, and Pet is a parent of Dog. By building on previously written code, we don't

have to repeat ourselves by writing the same code elsewhere and, as a result, we'll

have better organized, more efficient code.

Each class that represent a specific type of pets inherit the methods and properties

from the parent Pet class. Consider the Fish class... it has no code of its own and

inherits all of its behavior from Pet.

The Dog and Cat classes, on the other hand, extend the Pet class but also override

the speak()methods with their own version and add new functionality with plays()

methods.

What's With Public?

In classes, we attach what is called a visibility to our objects and our methods.

We always have three choices when assigning: public, protected or private. Public

means the class's objects and methods can be accessed by calls from anywhere.

Protected means the objects and methods can only be accessed by methods and

calls which are in the same class tree as the method or object being called. Private

means the methods and objects can only be accessed by the class that the method

or object belongs to.

For more information on visibility in classes, please check out the following re-

sources:

47Objects and OOP

■ php.net/manual/en/language.oop5.visibility.php2

■ aperiplus.sourceforge.net/visibility.php3

■ www.sitepoint.com/learn-object-oriented-php/4 ‎

We've covered the very basics of using OOP in PHP above. While it can seem like

a very complex and sophisticated coding strategy at first, it's actually more like

riding a bike; once you learn it, you'll never forget it.

OOP not only helps makes developing large and complex applications easier, but

it's also an approach that appears in almost every other professional programming

language. Learning and mastering it in PHP can help you understand other program-

ming languages in the future, so it's an incredibly useful skill to have.

From here on in, we'll assume that you're comfortable with OOP and the use of

classes and objects in PHP. To aid your understanding of the topics we discussed,

it's recommended that you check out these links:

■ http://codular.com/introducing-php-classes

■ http://www.php5-tutorial.com/classes/introduction/

■ http://php.net/manual/en/keyword.extends.php

■ http://jadendreamer.wordpress.com/2011/05/13/php-tutorial-learning-oop-class-

basics-extending-classes/

■ http://www.killerphp.com/tutorials/object-oriented-php/

■ http://www.techotopia.com/index.php/PHP_Object_Oriented_Programming

■ http://www.techflirt.com/tutorials/oop-in-php/index.html

■ http://net.tutsplus.com/tutorials/php/object-oriented-php-for-beginners/

2 http://php.net/manual/en/language.oop5.visibility.php
3 http://aperiplus.sourceforge.net/visibility.php
4 http://www.sitepoint.com/learn-object-oriented-php/

Jump Start PHP48

http://php.net/manual/en/language.oop5.visibility.php
http://aperiplus.sourceforge.net/visibility.php
http://www.sitepoint.com/learn-object-oriented-php/
http://codular.com/introducing-php-classes
http://www.php5-tutorial.com/classes/introduction/
http://php.net/manual/en/keyword.extends.php
http://jadendreamer.wordpress.com/2011/05/13/php-tutorial-learning-oop-class-basics-extending-classes/
http://jadendreamer.wordpress.com/2011/05/13/php-tutorial-learning-oop-class-basics-extending-classes/
http://www.killerphp.com/tutorials/object-oriented-php/
http://www.techotopia.com/index.php/PHP_Object_Oriented_Programming
http://www.techflirt.com/tutorials/oop-in-php/index.html
http://net.tutsplus.com/tutorials/php/object-oriented-php-for-beginners/

Templates
As we discussed in the first chapter, PHP files can handle both PHP code and HTML,

which makes it ideal for introducing new coders who have experience with HTML

to the world of server-side development. But when you start building and complex

applications, mixing PHP and HTML code together can cause confusion. And in

larger development teams, there may be team members who specialize in front-end

development and those who specialize in back-end development. Mixing front-end

code with back-end code in such environments can cause complications as team

members try not to get in each others' way.

Templating allows us to separate our front-end display logic from the data crunching

processes that run on the back-end. There are a few programming patterns built

around OOP that encourage templating, the most famous being the MVC (Model-

View-Controller) architecture pattern, which appears in several well-known

frameworks, such as CakePHP5, Zend Framework6, and CodeIgniter7. The MVC

pattern separates code into different areas of concern allowing us to better organize

our code base.

There are a few types of templating we can perform, but the simplest relies on

loading a PHP file that's mainly made up of HTML code. The purpose of any snippet

of PHP that may be interspersed around the file is only to display the content of a

variable. We set the variable elsewhere in a PHP-only file, and then include the

template for it to manage the display. Let's look at an example.

First, the template file would look like this:

<?php
<html>
 <head>
 <title><?php echo $pageTitle; ?></title>
 </head>
 <body>

<?php foreach ($array as $item) {?>
 <?php echo $item; ?>

5 http://cakephp.org/
6 http://framework.zend.com/
7 http://ellislab.com/codeigniter

49Objects and OOP

http://cakephp.org/
http://framework.zend.com/
http://ellislab.com/codeigniter

<?php } ?>

 </body>
</html>

Then, a PHP script would set the variables and include the template, like so:

<?php
$pageTitle = 'My Template Example';
$array = array('one', 'two', 'three');
require 'path/to/template.php';

When the template is included, it inherits the scope of the calling file and has access

to all the variables, functions, classes, etc. that the calling file possesses.

The advantages of using this method of templating are:

■ It's simple to implement. It doesn't require a special third-party template-render-

ing library to be available to your application.

■ Templates can still process PHP. The template can still loop through arrays, call

functions, etc.

However, there are also some negatives to using this approach:

■ Front-end developers using the templates must know PHP. Any developers

working with the templates must know PHP and how to develop in it.

■ It's not true templating. Strictly speaking, these "templates" are not actually

templates because they're just extra PHP files used to dictate the layout of the

data within the application.

An alternative to is to use special templating libraries that offer their own syntax.

They're very different from the templates we just discussed because, in order to

render the template with data, you don't use any PHP. Instead, you use special

syntax unique to the library that usually looks like a cross between PHP and plain

text. When the library renders the template, the library replaces the special syntax

with the data that it represents.

Jump Start PHP50

One famous example of templating that takes this approach can be found in Expres-

sion Engine CMS8, where all the templates contain specific code blocks to display

various bits of data.

<?php
<html>
 <head>
 <title>{% pageTitle %}</title>
 </head>
 <body>

{% if array as element %}
 {% element %}
{% /if %}

 </body>
</html>

Advantages to using this method of templating are:

■ There's no need to learn PHP. Front-end developers using the templates can be

given a list of code blocks to use for requesting data from PHP, therefore removing

the need to learn PHP coding and its syntax.

■ It uses standard HTML files. The template files can retain their traditional HTML

file extension.

However, there are some disadvantages to using this templating approach as well:

■ A rendering library is required. You'll need to have a third-party library to process

the templates available to your application.

■ Each library may have its own special syntax and functionality. This can effect

your application's processing structure or may conflict with your own personal

style of coding.

Both approaches clearly have their pros and cons, and it's worthwhile becoming

familiar with the various templating options to see what works best for your applic-

8 http://ellislab.com/expressionengine

51Objects and OOP

http://ellislab.com/expressionengine
http://ellislab.com/expressionengine

ation. For more information on templating, it's recommended that you check out

the following resources:

■ http://www.broculos.net/2008/03/how-to-make-simple-html-template-en-

gine.html

■ http://coding.smashingmagazine.com/2011/10/17/getting-started-with-php-

templating/

■ http://www.sitepoint.com/smarty-php-template-engine/

■ http://www.sitepoint.com/beyond-template-engine/

Project Files
Now that we've had a look at OOP and templating, it's time that we start implement-

ing these powerful coding practices in our blogging application, allowing us to build

the framework of our app. We'll need to add a number of files; Figure 3.1 shows

you what the root directory should look like, Figure 3.2 shows the admin directory,

Figure 3.3 shows the includes directory, and Figure 3.4 shows the frontend directory.

Figure 3.1. Main directory

Jump Start PHP52

http://www.broculos.net/2008/03/how-to-make-simple-html-template-engine.html
http://www.broculos.net/2008/03/how-to-make-simple-html-template-engine.html
http://coding.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
http://coding.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
http://www.sitepoint.com/smarty-php-template-engine/
http://www.sitepoint.com/beyond-template-engine/

Figure 3.2. Admin directory

Figure 3.3. Includes directory

53Objects and OOP

Figure 3.4. Frontend directory

We'll just add some skeleton code to outline how they're going to function. In each

of the files listed, add the code that follows. Once it's added, be sure to save the

file.

index.php

<?php
require_once('includes/posts.php');

$blog = new Posts;

$admin = new Comments;

login.php

<?php
 require_once('includes/login.php');

 $login = new Login;

Jump Start PHP54

includes/database.php

<?php

class Database{

 public $dbserver = '';
 public $username = '';
 public $password = '';
 public $database = '';
 public $db = '';

 public function __construct(){
 $this->dbserver = 'localhost';
 $this->username = 'xxx';
 $this->password = 'xxx';
 $this->database = 'xxx';
 $this->db = new PDO("mysql:host=".$this->dbserver.";
➥dbname=".$this->database, $this->username, $this->password);
 }

 public function dbselect($table, $select, $where=NULL){

 }

 public function dbadd($tablename, $insert, $format){

 }

 public function dbupdate($tablename, $insert, $where){

 }

}

includes/admin.php

<?php
 session_start();
 require_once('database.php');
 class Adminpanel{
 public function __construct(){
 }
 }

55Objects and OOP

 class Posts extends Adminpanel{

 public function __construct(){
 parent::__construct();
 }

 public function listPosts(){

 }

 public function editPosts(){

 }

 public function addPost(){
 }

 public function savePost(){

 }

 public function deletePost(){

 }

 }

 class Comments extends Adminpanel{

 public function __construct(){
 parent::__construct();
 }

 public function listComments(){

 }

 public function deletePost(){

 }

 }

 $admin = new Adminpanel();

Jump Start PHP56

includes/login.php

<?php
 require_once('database.php');
 class Login{

 public function __construct(){

 }

 public function index(){

 }

 public function loginSuccess(){

 }

 public function loginFail(){

 }

 private function validateDetails(){

 }

 }

includes/posts.php

?php

require_once('database.php');

class Blog{
 public $ksdb = '';
 public $base = '';
 public function __construct(){
 $this->ksdb = new Database;
 $this->base = new stdClass;
 $this->base->url = "http://".$_SERVER['SERVER_NAME'];

 }
}

57Objects and OOP

class Posts extends Blog{

 public function __construct(){
 parent::__construct();
 }

 public function getPosts(){

 }

 public function viewPost($postId){

 }
}

class Comments extends Blog{

 public function __construct(){
 parent::__construct();
 }

 public function commentNumber($postId){

 }

 public function getComments($postId){

 }

 public function addComment(){

 }

}

Now, that may seem like a lot to take in, but don't worry. In the next chapter we'll

be going over each of the files and their functions in detail as we build the function-

ality that makes the real guts of the application.

Summary
In this chapter we've seen two practices that help us keep our code organized and

manageable: OOP and templating.

Jump Start PHP58

OOP allows developers to write code that is organized and reusable. You'll find

OOP patterns in almost every computer programming language, so learning and

mastering OOP will improve your knowledge and skills as a developer.

Templating is another pattern that can keep our code well organized and helps

prevent front-end developers and back-end developers from getting in each other's

way.

In the next chapter we'll go over each of the files we created for our blogging applic-

ation and discuss their methods in detail as we build up the functionality for the

core of our application.

59Objects and OOP

Chapter4
Forms
Forms are a vital part of any web application; they're commonly used as a way for

visitors to provide information to websites. If you've done any type of HTML or

web development, the chances are you've spent at least a little time with

forms—perhaps connecting them to a third-party system for validation or processing.

PHP can work with very complex forms to enable users to submit data to be validated

and processed by your application.

In this chapter we're going to look at the various ways PHP can collect the data

submitted from a form, and discuss how to validate it, preparing it for entry into

our MySQL database. Later on, we'll carry on building our blog platform and will

add a working admin panel.

Form Elements
To start with, let's go over the basic elements that make up a working HTML form.

Forms are built with various HTML tags, such as <form>, <input>, <textarea>,

<select>, and <optgroup>, for handling data input. There are also <label> tags for

labeling inputs, although the data attached to these labels isn't passed through the

form when it's submitted.

The foundation of the form is an important part of how the data is transferred from

it to the processing script, so let's take a look at the important <form> element attrib-

utes you should consider:

■ action – The action attribute sets the destination to which the form data is

submitted. The value of this attribute can be an absolute or relative URL.

■ method – The method attribute specifies how the data is sent to the URL specified

in the action attribute. The value of the method attribute can be either POST or

GET, with GET being the default option if this attribute is left empty. We will

discuss these options later in this chapter as they play vital roles in processing

a form's data in PHP.

■ enctype – This attribute specifies how the form's data is encoded when it's

submitted. However, this attribute only comes into effect when the method attrib-

ute has been set to POST. enctype has three possible values:

application/x-222-form-urlencoded, multipart/form-data and text/plain.

The first option encodes everything that's submitted into the form, so all spaces

are encoded to "+" and all other special characters are converted to ASCII Hex

values. The second option encodes none of the form data. This is essential if

your form has any type of file upload control or processing. The last option will

convert spaces in the submitted data to "+" but won't encode any special charac-

ters. These options should be assessed when coding your form as they'll play

an important role in the state of the data when it arrives at the action attribute's

URL.

There are two attributes that can be set on any form element and that are also im-

portant when processing data with PHP scripts:

■ name – The name attribute value is an identifier used to collect the data when it's

sent to the destination URL. For example, if we have the element <input

type="text" name="data" />, the value entered for it by the user becomes

available in an array on the server and can be referenced using the array key

'data'.

■ value – The value attribute is where the information or data for each element

in the form is set. You can use this attribute to set a default value for an element.

Here's an example form using some of the attributes outlined above:

Jump Start PHP62

<form method="post">
 <input name="myField" value="Hello World" />
 <button type="submit">submit</button>
</form>

So far we've only looked at the important parts of forms that come into play when

using them in PHP. However, you may find yourself using attributes and tags that

haven't been listed here. The elements we've discussed cover the basics, so if you're

hungry for more information on forms, feel free to hit up these external references:

■ http://reference.sitepoint.com/html/elements-form

■ http://www.tizag.com/htmlT/forms.php

■ http://www.htmlgoodies.com/tutorials/forms/article.php/3479121/So-You-Want-

A-Form-Huh.htm

POST and GET
Each form's method attribute allows only two options, POST and GET. As we know,

PHP has some special predefined variables such as the $_SESSION variable. PHP

also has two other predefined variables which are designed to collect data ultimately

sent by HTML forms, $_POST and $_GET, but these variables can also be used in

other ways—something we'll take a look at later on.

For now, let's illustrate the difference between POST and GET with an example.

Create some new files in our experiments folder: form.php and collect.php. In our

form.php file, add the following code:

<html>
<body>
 <form method="post" action="collect.php">
 <h1>Form #1</h1>
 <input name="data" placeholder="enter a string"
➥type="text" />
 <button type="submit">submit</button>
 </form>
 <form method="get" action="collect.php">
 <h1>Form #2</h1>
 <input name="data" placeholder="enter a string"
➥type="text" />

63Forms

http://reference.sitepoint.com/html/elements-form
http://www.tizag.com/htmlT/forms.php
http://www.htmlgoodies.com/tutorials/forms/article.php/3479121/So-You-Want-A-Form-Huh.htm
http://www.htmlgoodies.com/tutorials/forms/article.php/3479121/So-You-Want-A-Form-Huh.htm

 <button type="submit">submit</button>
 </form>
</body>
</html>

Done that? Good. Now go ahead and add the following code to the collect.php file:

<?php
if (!empty($_POST['data'])) {
 echo 'The following string was sent from form #1: ' .
➥$_POST['data'];
} elseif (!empty($_GET['data'])) {
 echo 'The following string was sent from form #2: ' .
➥$_GET['data'];
}

Next, open form.php in your browser, type something into the input field in Form

#1 and hit submit. You should see something like Figure 4.2:

Figure 4.1. Entering data into our form

Jump Start PHP64

Figure 4.2. The result of submitting the form

If you fill out Form #2, as shown in Figure 4.3, and hit submit, you should see

something similar to Figure 4.4:

65Forms

Figure 4.3. Entering data into Form #2

Figure 4.4. The result of submitting the form

Jump Start PHP66

The main difference between the two forms is shown if you look at the URL you're

redirected to when you submit Form #2—as shown in Figure 4.5.

Figure 4.5. The URL the form redirects to after submission

As you can see, the string we entered into Form #2 has been placed into the URL,

along with some other pieces of code. This is what we call a URL variable and it

results from a form submitted with the GET method. The POST method, on the other

hand, sends the data between the pages silently, behind the scenes. Using this

method, the user sees no evidence of their data, except when the string is displayed

in their browser by the collect.php file.

Because the data is present in the URL as a variable before being submitted to the

collect.php script, the GET method is less secure than the POST method. As such, if

you have hidden input fields in your form—such as identification data or authoriz-

ation data—you would want to use the POST method rather than the GET method.

In fact, in most cases when developing a web app, you will want to use the POST

method for transferring data. This is because, with the GET method, any data can

be injected into the URL variable.

For example, if we navigate to the collect.php file in our browser, we should see a

blank screen. Now in the URL bar, after collect.php let's add

?data=hello%20world%20I%20have%20been%20injected. If we then load this new

URL, we can see that the injected data in the URL is being displayed on screen.

Now, our example is not that alarming and may seem kind of cool, but actually this

is a tame example of a potentially risky issue.

Imagine that we have a form that looks like Figure 4.6.

67Forms

Figure 4.6. A form at risk of tampering

When this form is submitted, it sends data to a database. The form also contains a

hidden input element that holds data detailing the user's ID in the database. We

have used a GET method for this form so, when it's submitted, our browser would

show a URL like:

http://www.ourdomain.com/savedata.php?userid=1&name=user&bio=
➥hello%20world

Can you see the risk? A malicious person could change the userid URL variable to

a different user's identifier, and alter the name or bio URL variable. The result? That

user's information will have been changed without them authorizing it, or even

knowing it's taken place.

Jump Start PHP68

Form Action with PHP
We've looked at some simple examples of using forms, and the basic use of $_POST

and $_GET, but there's more to processing forms with PHP than just these two vari-

ables.

To begin with, let's take a quick look at PHP_SELF. As we've discussed, PHP has

special predefined variables, which we can use throughout our scripts to do some

very special things. A group of these variables, however, are even more special than

the rest. They're located within the $_SERVER array, which hold server and execution

environment information, such as headers, paths, and script locations on the server.

We can access these pieces of data just as we would with any other array. One of

the keys in the $_SERVER array is PHP_SELF, which holds information on the current

PHP file being accessed in relation to the document root.

To see this PHP_SELF value in action, let's create a new file in our experiments folder

called self.php. In this file, add the following code:

<?php
echo $_SERVER['PHP_SELF'];

Now, when you view this file in your browser, you should see the URL to the file

self.php relative to your server's document root.

In our case this'd be something similar to "localhost/experiments/self.php".

We can use 'PHP_SELF' in our form's action attribute to make it submit to self.php,

and there we can use the $_POST or $_GET variables to check if the form has trans-

ferred the data, and then execute code to process it further.

An example of this would be:

<?php
if (!empty($_POST['data'])) {
 echo 'Form has been submitted';
 // code to process data from form
}
?>
<html>
<body>
 <form action="POST" action="<?php echo $_SERVER

69Forms

➥['PHP_SELF']; ?>">
 <input type="text" name="data" type="text"
➥placeholder="Type in a string here" />
 <button type="submit">submit</button>
 </form>
</body>
</html>

When the form is submitted, PHP detects this and executes the echo command,

which displays the "Form has been submitted" string in our browser. The PHP_SELF

variable is very useful for forms that need to submit to the same script that displays

them and, upon submission, execute code to handle the data.

When using the PHP_SELF variable as your form's action, it's important to use the

htmlspecialchars() function to filter any unwanted characters from the URL to

help prevent Cross Site Scripting (XSS) attacks. To implement this in our example

above, you'd change the form tag to look like the following:

<form action="POST" action="<?php echo htmlspecialchars
➥($_SERVER['PHP_SELF']); ?>">

For more information on improving the security of your PHP scripts and protecting

against XSS vulnerabilities, please check out the following articles:

■ http://seancoates.com/blogs/xss-woes

■ http://blog.astrumfutura.com/tag/xss/

Superglobals and $_REQUEST
$_POST and $_GET belong to specific group of variables known as superglobal vari-

ables. Superglobals are specially-defined variables—normally arrays—that are built

into PHP and can be accessed in any script at any point. They're called superglobals

because they can be accessed anywhere, and at any time. The $_SERVER variable

we discussed in the previous section is also part of the superglobal family of vari-

ables, along with some others that we haven't discussed yet.

Another member of the superglobal family is the $_REQUEST variable. It's a little

different from other superglobals, such as $_POST and $_GET. Indeed, $_REQUEST is

unusual because its keys are created by all values generated in the current HTTP

Jump Start PHP70

http://seancoates.com/blogs/xss-woes
http://blog.astrumfutura.com/tag/xss/

request by the user's browser. This means that all data stored in the $_GET variable

and the $_POST variable can be accessed by $_REQUEST.

In addition, any data stored using browser cookies is also stored in $_REQUEST. At

first, you may think this could be very useful, but it actually poses a very significant

security risk, specifically because it can access data from cookies in PHP. Having a

superglobal that can be accessed anywhere in PHP, and which can also gather

cookie data is like have a ticking time bomb sitting in your PHP code.

I strongly advise not using $_REQUEST, and to ensure none of your PHP code is ac-

cessing it. This will remove the risk of malicious attacks manipulating the script

accessing the superglobal to access your users' sensitive cookie data.

php.ini is set up by default to not include cookie data in $_REQUEST, but if your host

has edited PHP's php.ini configuration file, they may have changed the default setting.

It's strongly advised not to access cookie data through the $_REQUEST superglobal;

the safest method is to turn off access to cookie data in php.ini. For more information

on the $_REQUEST superglobal, including examples of it in use, and an overview of

the risks entailed in using it, please see the PHP manual's resource page.1

Forms and Databases
Given what we've discussed previously, it may seem to you like GET is the bad guy,

but it can actually be quite useful in a variety of ways. As we've discussed, GET will

pass form field values as parameters in the URL, which, in turn, can be used by a

PHP script to create dynamic data.

So far, we've looked at data taken from a URL, which has been created by a form.

However we can also use GET without a form to generate a dynamic URL. This can

be useful in many situations. For example, if we want to load a blog post in the

front-end of our application, we can collect a post's id from a specifically written

URL using the $_GET variable, and then pass on that id to our script to collect the

specific post from the database.

To try this out, we first need to open phpMyAdmin and create a new database called

testposts, ensuring we have selected a user from our list who's already set up in

phpMyAdmin to have full privileges to it.

1 http://php.net/manual/en/reserved.variables.request.php

71Forms

http://php.net/manual/en/reserved.variables.request.php

Next we create a new table called posts, which can be done either through the PDO

MySQL script, or by using phpMyAdmin.

Our table posts will only need two columns for the purposes of this example: id

and content. The id column should be set as the PRIMARY index key with

AUTO_INCREMENT enabled, and its type set to INT, while the content column is set

as LONGTEXT.

Once the table has been created, we need to place a test post into it. Add an entry,

placing some dummy copy into the content column. Feel free to add some paragraph

HTML tags where appropriate. A unique id should be generated for this entry

automatically.

Use Basic HTML Formatting for the Content in Your Database

You should only use basic HTML formatting tags in your database. Complex HTML

or any other browser processed coding language can cause security issues.

Now let's create a new file in our web experiment folder called post.php. Let's imagine

that we have the following URL: localhost/experiments/post.php?id=1 where

the id URL variable represents the post id. In this case, the post has an id of 1, and

experiments is the name of the folder where we'll be creating this example.

In our post.php file, add the following code:

<?php
class Posts {
 public $db = '';
 public function __construct() {
 $this->db = new PDO("mysql:host=localhost;dbname=kickstart",
➥"root", "i8vfbxdb");
 $this->db->setAttribute(PDO::ATTR_ERRMODE,
➥ PDO::ERRMODE_EXCEPTION);
 $this->index();
 }
 public function index() {
 $id = 0;
 $posts = array();
 $template = '';
 if (!empty($_GET['id'])) {
 $id = $_GET['id'];

Jump Start PHP72

 }
 try {
 if (!empty($id)) {
 $query = $this->db->prepare("SELECT * FROM posts
➥WHERE id = ?");
 $params = array($id);
 $template = 'single-post.php';
 } else {
 $query = $this->db->prepare("SELECT * FROM posts");
 $params = array();
 $template = 'list-posts.php';
 }
 $query->execute($params);
 for ($i = 0; $row = $query->fetch(); $i++) {
 $posts[] = array('id' => $row['id'], 'content' =>
➥ $row['content']);
 }
 } catch (PDOException $e) {
 echo $e->getMessage();
 }
 $query->closeCursor();
 $db = null;
 require_once($template);
 }
}
$posts = new Posts();
?>

What we've done here is is to create a new class, Posts. At the start we initiated

our PDO MySQL connection. We then move onto the index method, in which we

check to see if the URL has a URL variable and, if so, we collect it from the URL, as

well as attempt to collect the post with the same id from our database. If there's no

URL variable, we then just load up all the posts in our database. Finally we then

load the template which relates to the database query we have executed.

Next, we'll need to put together our template files to display the data we've retrieved

from the database. So create two new files—one called list-posts.php, and the other

single-post.php. In list-posts.php add the following code:

<h1>List of Blog Posts</h1>
<?php foreach ($posts as $post): ?>
 <h3>Post #<?php echo htmlspecialchars($post['id']); ?></h3>

73Forms

 <?php echo htmlspecialchars($post['content']); ?>
 <a href="http://localhost/experiments/posts.php?id=<?php echo
➥htmlspecialchars($post['id']); ?>">Read More
 <hr/>
<?php endforeach; ?>

Finally in our single-post.php file add this code:

<?php foreach($posts as $post): ?>
 <h1>Post #<?php echo htmlspecialchars($post['id']); ?></h1>
 <hr/>
 <?php echo htmlspecialchars($post['content']); ?>
 ">
➥Back to Post List
<?php endforeach; ?>

Now, if we navigate to our posts.php file we can see there's a list of posts—or a single

post in this case, as we currently only have one in the database—each of which has

a link for us to "Read More". Clicking on this link takes us to the individual post

page, and displays a different template than the one used to view the full list of

posts.

This is a very short example, showing how the $_GET variable allows us to dynam-

ically load blog posts, and interact with our database. We could easily change the

example to use the $_POST variable instead. However, we wouldn't then be able to

share URLs referring to individual posts. Instead, the URL would only send visitors

to the list of posts where they must click on the "Read More" link themselves.

This example leads us very nicely to the next section of this chapter where we'll

expand on this code snippet, along with the earlier ones, and begin to build the real

guts of our blog platform.

Building on our Platform
In this section, we're going to build on the example we've just created—which dis-

plays a list of blog posts with links to read individual posts—and get that working

in our application.

Jump Start PHP74

Let's take the existing code from above and tweak it slightly. Modify the posts.php

file in the includes directory our blog platform folder so the constructor looks like

this:

public function __construct() {
 parent::__construct();
 $this->comments = new Comments();
 if (!empty($_GET['id'])) {
 $this->viewPost($_GET['id']);
 } else {
 $this->getPosts();
 }
}

With this code, our constructor checks to see if there's a URL variable called id. If

there is, it proceeds to collect the data from the variable, and pass it to the view-

Post() method within the Blog class. If there isn't a URL variable called id, the

application is, instead, told to load up all the posts from our database. This'll allow

visitors to see all of our posts, and then click on a link to view an individual post.

The next change that we'll make to the posts.php file is to edit is the getPosts()

method:

public function getPosts() {
 $id = 0;
 $posts = $return = array();
 $template = '';
 $query = $this->ksdb->db->prepare("SELECT * FROM posts");
 try {
 $query->execute();
 for ($i = 0; $row = $query->fetch(); $i++) {
 $return[$i] = array();
 foreach ($row as $key => $rowitem) {
 $return[$i][$key] = $rowitem;
 }
 }
 } catch (PDOException $e) {
 echo $e->getMessage();
 }
 $posts = $return;

75Forms

 $template = 'list-posts.php';
 include_once 'frontend/templates/' . $template;
}

The getPosts() method is used to collect all the posts from the database to create

a list of them for visitors to our blog. It uses the PDO database functionality from

the database.php file in the includes folder. This allows us to write our own database

query through PDO. Using this method we want to load all the rows from the posts

table with the SELECT * FROM posts database query. We then use the try and catch

exception handling routine in an attempt to run the query. If it's successful, we then

loop through the array returned from the database and add the result to a new key

in the $return array. If it fails, we echo the error message from PDO that tells us

what's wrong with our database query. Finally, we load the list-posts.php tem-

plate.

Displaying PDO Error Messages

Echoing PDO error messages, as we've done in the example above, can be helpful

during development, as it'll help us track down with issues our databse queries.

However, you should definitely not echo PDO error messages in production ap-

plications—doing so can be a security risk.

The last step for this class is to edit the viewPost() method:

public function viewPost($postId) {
 $id = $postId;
 $posts = $return = array();
 $template = '';
 $query = $this->ksdb->db->prepare
➥("SELECT * FROM posts WHERE id = ?");
 try {
 $query->execute(array($id));
 for ($i = 0; $row = $query->fetch(); $i++) {
 $return[$i] = array();
 foreach ($row as $key => $rowitem) {
 $return[$i][$key] = $rowitem;
 }
 }
 } catch (PDOException $e) {
 echo $e->getMessage();
 }

Jump Start PHP76

 $posts = $return;
 $posts[0]['content'] = $posts[0]['content'];
 $template = 'view-post.php';
 include_once 'frontend/templates/'.$template;
}

In a nutshell, the viewPost() method displays individual blog posts to our blog's

visitors.Our application uses it to load the data for a particular post, based on data

from a URL variable. It requires that $postId is passed to the method once it's called,

which we've done with the class's constructor. This method uses the PDO database

functionality to load a specific post from the database based on the id of the posts

stored in the database. In addition, our script uses a try ... catch exception handler

to check if the database query is successful. If the query is successful, we'll again

loop through the array returned from the database, and assign the data returned to

a key in the $return array. If it fails, we show the database error generated by PDO,

as before. Finally, we load up the view-post.php template..

In the methods described above, we're loading some template files— so we need to

go ahead and create them. Now, we could build the template files from scratch, but

for the purposes of this project, we'll design and build them using the Twitter

Bootstrap Framework2. Bootstrap is fantastic for getting web applications' UI elements

up and running incredibly quickly, freeing you to focus on the task of building the

back-end of an amazing application.

If you're comfortable with setting up Bootstrap yourself, go ahead and implement

it into the project as you see fit. If you're unsure about the process, don't worry—copy

everything from the includes folder in this book's code archive, and you'll be up and

running with Twitter Bootstrap in no time.

Go back to our project and create two new files in the templates folder in the frontend

folder and title them list-posts.php and view-post.php. In list-posts.php add the follow-

ing code:

<?php require_once 'includes/temps/header.php'; ?>
<?php foreach ($posts as $post): ?>
 <h3>Post #<?php echo htmlspecialchars($post['id']); ?></h3>
 <p><?php echo implode(' ', array_slice(explode(' ',

2 http://twitter.github.io/bootstrap/index.html

77Forms

http://twitter.github.io/bootstrap/index.html
http://twitter.github.io/bootstrap/index.html

➥strip_tags($post['content'])), 0, 10)); ?> [...]</p>
 <a href="<?php echo $this->base->url."/?id=".$post['id'];
➥ ?>" class="btn btn-primary">Read More
 <hr/>
<?php endforeach; ?>
<?php require_once 'includes/temps/footer.php'; ?>

Next, add the following code to the view-post.php file:

<?php require_once 'includes/temps/header.php'; ?>

<a href="<?php echo $this->base->url; ?>" class="btn btn-primary">
➥Return to Post List
<?php foreach ($posts as $post): ?>
 <h3>Post #<?php echo htmlspecialchars($post['id']); ?></h3>
 <?php echo htmlspecialchars($post['content']); ?>
 <hr/>
<?php endforeach; ?>
<?php require_once 'includes/temps/footer.php'; ?>

Our list-post.php file loops through the numerous posts we have collected from

our database, creating a small excerpt from our post's content and creating a link

to read each one. Our view-post.php file displays the title and the body of content

for an individual post that's been loaded from the database.

Both list-post.php and view-post.php should seem pretty straightforward.

However, you may have noticed some unusual and complex-looking code in the

list-posts.php file:

implode(' ', array_slice(explode(' ',
view-post.phpstrip_tags($post['content'])), 0, 10));

This line of code combines several different PHP functions to strip out the first ten

words of our post's content to automatically create an excerpt string that'll be dis-

played in our list of posts. The strip_tags() function removes any HTML tags

from the content, and the explode() function creates a new array and key each time

the function encounters a space in the content. Next, the array_slice() function

is used to take the first ten keys in our array created by the explode() function. The

array_slice() function is passed 0 to indicate it should start counting from 0 and

stop counting when it reaches 10. In addition, it's passed the array created by the

Jump Start PHP78

explode() function. Finally we use the implode() function to bring those ten array

values together as a string.

For more details about these functions in PHP and an in-depth overview of what

they can be used for, check out the following resources:

■ http://php.net/manual/en/function.strip-tags.php

■ http://php.net/manual/en/function.explode.php

■ http://php.net/manual/en/function.array-slice.php

■ http://php.net/manual/en/function.implode.php

The next stage in our example application is to create our admin and login panels.

We'll create the latter first. Open up the login.php file in the includes directory. It's

located within our project directory's main directory. Start by adding the following

to the constructor method:

public function __construct() {
 $this->ksdb = new Database;
 $this->base = (object) '';
 $this->base->url = "http://".$_SERVER['SERVER_NAME'];
 $this->index();
}

In essence, our constructor sets up the objects and variables we're going to need

throughout the class. Next we need to add to the index() method:

public function index() {
 if ($_SERVER['REQUEST_METHOD'] === 'POST') {
 $this->validateDetails();
 } elseif (!empty($_GET['status']) && $_GET['status'] ==
➥'inactive') {
 $error = 'You have been logged out due to inactivity.
➥ Please log in again.';
 }
 require_once 'admin/templates/loginform.php';
}

In the index() method, we check to see whether our user has been logged out due

to inactivity. It does this by checking to see if the inactive URL variable has been

79Forms

http://php.net/manual/en/function.strip-tags.php
http://php.net/manual/en/function.explode.php
http://php.net/manual/en/function.array-slice.php
http://php.net/manual/en/function.implode.php

set. It also checks to see if form data has been passed to it using the POST method

and, if so, the script then assumes that a user is trying to log in and will fire up the

validateDetails() method to check their login details—something we'll cover

shortly. Finally, the method loads up loginform.php,which is used to load the

form for users to log in with.

Next we move onto the loginSuccess() method and the loginFail() method:

public function loginSuccess() {
 header('Location: http://' . $_SERVER['SERVER_NAME'] .
➥ '/admin/posts.php');
 return;
}

public function loginFail() {
 return 'Your Username/Password was incorrect';
}

The loginSuccess() method is used in those instances when the login is successful,

and the method redirects the user to the admin panel, and the loginFail() method

returns an error status (informing the user that their login was unsuccessful.)

For more information on the header() function, please see http://php.net/manu-

al/en/function.header.php.

Finally, we'll move on to the validateDetails() method:

private function validateDetails() {
 if (!empty($_POST['username']) && !empty($_POST['password'])) {
 $salt = '$2a07R.gJb2U2N.FmZ4hPp1y2CN$';
 $password = crypt($_POST['password'], $salt);
 $return = array();
 $query = $this->ksdb->db->prepare("SELECT * FROM users WHERE
➥username = ? AND password = ?");
 try {
 $query->execute(array($_POST['username'], $password);
 for ($i = 0; $row = $query->fetch(); $i++) {
 $return[$i] = array();
 foreach ($row as $key => $rowitem) {
 $return[$i][$key] = $rowitem;
 }
 }

Jump Start PHP80

http://php.net/manual/en/function.header.php
http://php.net/manual/en/function.header.php

 } catch (PDOException $e) {
 echo $e->getMessage();
 }
 if (!empty($return) && !empty($return[0])) {
 $this->loginSuccess();
 } else {
 echo $error = $this->loginFail();
 }
 }
}

validateDetails() is the core method within the login class, and is where our

script checks and validates the user's attempt to log in to our blog application's admin

panel.

To start with, the method checks that the script has obtained form data using the

POST method, and checks that the username and password keys are present in the

$_POST superglobal variable and are not empty, using the empty() function in PHP.

If the username and password are in the $_POST superglobal variable, we then create

a password salt3 made up of random characters and symbols used to encrypt our

password. We then take the submitted passwords from the login form, encrypt it,

and then check to see if the submitted username and encrypted password match

the details stored in the database.

Now that we have our login class created, we just need to create a template for our

login form. Create a directory named templates in the admin folder, and add a new

PHP file called loginform.php.

A Note on Structure

It's worth taking the time to create a new header and footer template file for the

admin section. Separating the front-end header and footer template files will save

complication when differentiating between the front-end and the admin panel.

Please see the project's file structure for more details about setting this up.

In the loginform.php file, add the following code:

3 http://en.wikipedia.org/wiki/Salt_(cryptography)

81Forms

http://en.wikipedia.org/wiki/Salt_(cryptography)

<?php require_once 'includes/temps/header.php'; ?>

<?php if (!empty($error)): ?>
 <div class="alert alert-error">~<?php echo $error; ?></div>
<?php endif; ?>

<form action="<?php echo htmlspecialchars($_SERVER['PHP_SELF']); ?>"
➥ method="post" class="form-horizontal offset2">
 <h3>Admin Login</h3>
 <div class="control-group <?php echo (!empty($error)?
➥ 'error': ''); ?>">
 <label class="control-label" for="inputEmail">Username
➥</label>
 <div class="controls">
 <input type="text" name="username" id="inputEmail"
➥placeholder="Username">
 </div>
 </div>
 <div class="control-group <?php echo (!empty($error)? 'error':
➥ ''); ?>">
 <label class="control-label" for="inputPassword">Password
➥</label>
 <div class="controls">
 <input type="password" name="password"
➥id="inputPassword" placeholder="Password">
 </div>
 </div>
 <div class="control-group">
 <div class="controls">
 <button type="submit" class="btn">Sign in</button>
 </div>
 </div>
</form>
<?php require_once 'includes/temps/footer.php'; ?>

In this file, we've created a form, which prompts the user for a username and a

password to log in to the admin section of our application. When this form is sub-

mitted, it will send its data to the same file our login class will use to handle the

login process. It'll then send back any errors, along with the user, to this login file.

Now that we have our login panel and login class created, we just need to create

the admin panel and its required classes. In the includes directory again, open the

file admin.php file and add the following:

Jump Start PHP82

class Adminpanel {
 public function __construct() {
 $this->ksdb = new Database;
 $this->base = (object) '';
 $this->base->url = "http://".$_SERVER['SERVER_NAME'];
 }
}

Here we've added code to the constructor in the Adminpanel class, which contains

objects and variables we're going to use throughout the admin.php file. This is the

main class that the other classes in the admin file are going to extend.

Next, we are going to add code to the listPosts() method:

public function listPosts() {
 $posts = $return = array();
 $query = $this->ksdb->db->prepare("SELECT * FROM posts");
 try {
 $query->execute();
 for ($i = 0; $row = $query->fetch(); $i++) {
 $return[$i] = array();
 foreach ($row as $key => $rowitem) {
 $return[$i][$key] = $rowitem;
 }
 }
 } catch (PDOException $e) {
 echo $e->getMessage();
 }
 $posts = $return;
 require_once 'templates/manageposts.php';
}

The listPosts() method is almost exactly the same as the getPosts() method

from the posts.php file: We load all the posts from the posts table in the database

and check the query. If the check is OK, we get the data from the database and add

it to the $return array. If not, we show the database error. Finally, we load the

manageposts.php template file.

Now, we move onto the addPost() method:

83Forms

public function addPost() {
 require_once 'templates/newpost.php';
}

This simply loads the newpost.php template.

Finally, we add to the savePost() method:

public function savePost() {
 $array = $format = $return = array();
 if (!empty($_POST['post'])) {
 $post = $_POST['post'];
 }
 if (!empty($post['content'])) {
 $array['content'] = $post['content'];
 $format[] = ':content';
 }
 $cols = $values = '';
 $i = 0;
 foreach ($array as $col => $data) {
 if ($i == 0) {
 $cols .= $col;
 $values .= $format[$i];
 } else {
 $cols .= ',' . $col;
 $values .= ',' . $format[$i];
 }
 $i++;
 }
 try {
 $query = $this->ksdb->db->prepare("INSERT INTO posts
➥(".$cols.") VALUES (".$values.")");
 for($c=0;$c<$i;$c++){
 $query->bindParam($format[$c], ${'var'.$c});
 }
 $z=0;
 foreach($array as $col => $data){
 ${'var' . $z} = $data;
 $z++;
 }
 $result = $query->execute();
 $add = $query->rowCount();
 } catch (PDOException $e) {
 echo $e->getMessage();

Jump Start PHP84

 }
 $query->closeCursor();
 $this->db = null;
 if (!empty($add)) {
 $status = array('success' => 'Your post has been saved
➥successfully.');
 } else {
 $status = array('error' => 'There has been an error saving
➥your post. Please try again later.');
 }
 header("Location: http://localhost/kickstart/admin/posts.php");
}

The savePost() method uses the PDO database functionality to prepare an INSERT

SQL query to save data to the posts table in our database. We then return a status

depending on whether the data has saved to the database correctly or not. Here

we're using the insert methods we spoke about in Chapter 2.

All we have to do now is to create a couple more templates. We'll add two new PHP

files to the templates folder inside the admin directory. The first file, manageposts.php,

is where we see a list of all the posts saved in our database, while the other,

newpost.php, is where we have a very simple form in which we can enter data to

create content for a new blog post. In the manageposts.php file, add the following

code:

<?php require_once '_inc/header.php'; ?>
<a href="<?php echo $this->base->url; ?>/posts.php?action=create"
➥class="btn btn-info">Create Post
<table>
 <thead>
 <tr>
 <td>Post Title</td>
 <td>Post Content</td>
 <td>Actions</td>
 </tr>
 </thead>
 <tbody>
 <?php foreach($posts as $post): ?>
 <tr>
 <td><h3>Post #<?php echo htmlspecialchars($post['id']);
➥ ?></h3></td>
 <td><p><?php echo implode(' ', array_slice(explode(' ',

85Forms

➥ strip_tags($post['content'])), 0, 10)); ?> [...]</p></td>
 <td><a href="<?php echo $this->base->url."/posts.php
➥?id=".$post['id']."&action=edit"; ?>" class="btn btn-primary">
➥Edit Post<a href="<?php echo $this->base->url."/?id=".
➥$post['id']."&action=delete"; ?>" class="btn btn-primary">
➥Delete Post</td>
 </tr>
 <?php endforeach; ?>
 </tbody>
</table>
<?php require_once '_inc/footer.php'; ?>

Here we can see the use of the strip_tags(), explode(), array_slice() and

implode() methods combined together to create a short excerpt for our post, as well

as the foreach loop to iterate over all the posts that are collected from our database.

Next, open up the newpost.php file and add the following code:

<?php require_once '_inc/header.php'; ?>
 <form action="<?php echo $this->base->url.'
➥/posts.php?action=save'; ?>"method="POST">
 <h3>
 New Post
 </h3>
 <div class="control-group">

 <label class="control-label" for="content">Content</label>
 <div class="controls">
 <textarea name="post[content]" id="content">
➥</textarea>
 </div>
 </div>
 <div class="control-group">
 <div class="controls">
 <button type="submit" class="btn">
 Save Post
 </button>
 </div>
 </div>
 </form>
 <?php require_once '_inc/footer.php'; ?>

Jump Start PHP86

At this point, we only have a basic text area for typing content. Later on, we'll be

expanding this panel further to include an area for a post title, and change the text

area into a more dynamic and usable content editor.

After all the code above has been added to the newpost.php file, you should now

have a working admin panel where you can create new blog posts!

We're also able to access the public, or front-end, section of our project, view a list

of blog posts, and click on an individual post to read its content, as shown in Fig-

ure 4.7. Exciting, huh?

Figure 4.7. The front-end of our project

Feel free to navigate to the project's main index.php file and start using the system.

In the next chapter we will extend the admin panel further to allow us to update

existing blog posts in the database and also to delete blog posts.

Summary
Forms are a vital part of any web application, enabling users to submit data. PHP

provides us with powerful tools for processing, storing and working with the data

submitted via forms. In this chapter, we've discussed the ways PHP can collect the

data submitted from a form, looked at the POST and GET methods, and also dis-

87Forms

cussed how to validate the data collected, preparing it for entry into our MySQL

database. We then used the form methods we had discussed to build out our blog

application.

Jump Start PHP88

Chapter5
Sessions and Cookies
As we've discussed, databases are ideal for storing permanently storing data that

an application can retrieve at a later date. There are, however, some options for

storing data on a more temporary basis with PHP. Cookies and sessions are designed

to hold smaller chunks of data than would normally be held in a database. They're

often used to hold users' personal data for login functionality, for example, and to

provide quick access to user data for functionality like application profiles.

The big difference between cookies and sessions is where the data is stored. Cookies

store data on the client's computer, while sessions store their data on the web

server. PHP can work with both cookies and sessions, and we'll take a closer look

at each of these options in detail in this chapter.

Cookies: Overview
HTTP requests are stateless, which means that every time a new page is requested

by a browser, data relevant to a previous request from the user isn't remembered by

the web server.

Fortunately we have the option to use cookies, which allow us to store small pieces

of information on a visitor's browser. This cookie information can be loaded by a

website, and used in its scripts to personalize data, or to help create dynamic data

on pages within the site.

Cookies are also incredibly useful when you need to keep data between HTTP page

requests. Each cookie created in the browser is accessible only by the browser that

created it, helping to keep the information contained in it secure.

Cookies and Recent European Legislation

Recently, cookies have been placed under a blanket of doubt for web developers

who live, or work with projects that are to be deployed, in Europe. The European

Union has the opinion that cookies are being used to store too much personal in-

formation about visitors to websites, and new legislation1 has been put in place

with the aim of making their use more transparent.

This legislation doesn't mean developers shouldn't use cookies, but it does mean

we're having to use them more efficiently, and only use them when their applica-

tion has a real need.

The truth is, most cookies used by websites are harmless—with many used simply

to enhance content for users based on personal information they've readily given

to the site.

Sessions: Overview
Useful as they are, cookies do have a vulnerability—because they're stored on a

user's computer, they can, in theory, be tampered with by the user or, even worse,

by a virus on the user's computer. Sessions offer an alternative to cookies and come

without the client-side security risk.

Sessions are a special form of continuity used to store data across page requests as

a user navigates during their visit to your website. When you log into a web applic-

ation, edit some content, and log out, more often than not, a session will have been

working away behind the scenes.

1 http://www.ico.org.uk/for_organisations/privacy_and_electronic_communications/the_guide/cook-

ies

Jump Start PHP90

http://www.ico.org.uk/for_organisations/privacy_and_electronic_communications/the_guide/cookies

It's worth noting that sessions still rely on cookies to successfully attribute data

stored in a session on the website's server to the client. To put it another way, a

cookie on the client's computer is required to identify them each time they visit the

website.

Session Vs Cookies
As you're developing in PHP you can use both cookies and sessions without much

difficulty. Both can be accessed using very simple methods in any script. Before

we dive into any code, though, it's important to explore cookies' and sessions' unique

features to better understand when you might favor one over the other.

Cookies
The first unique feature of cookies—as opposed to sessions—is that we give them

an expiry date. When clients leave our website or web application and wander off

to other parts of the Internet, there's a good chance that they may return at some

point. With cookies we can set an expiry date so that, when the user does visit again,

as long as the expiry date hasn't passed, information they submitted or entered before

can be displayed as if they've never been away.

A good example of the use of expiry dates is when you log into a social media ap-

plication, like Facebook. After logging in, you might navigate to another site. But

return to Facebook within a certain time period and you may discover that you're

still logged in. The cookie provides Facebook with a piece of data that helps it to

load up our profile, which improves the user experience hugely. Giving cookies an

expiry date makes this convenience to the user possible while adding a layer of se-

curity. By obliging users to re-authenticate after a certain period of inactivity has

passed, other users are prevented from accessing the data stored in the cookie

through means of hardware hijacking.

Another feature unique to cookies is that, each time someone visits a website that

has created a cookie on their machine, the cookie is automatically included in

subsequent HTTP requests sent by the client. With this in mind, it's important not

to have your cookies store too much data as they'll be using the web server's band-

width.

Cookies make data management simpler as using them doesn't require any form of

database for storing the data or the cookie. This, in turn, means you don't need any

91Sessions and Cookies

skill or knowledge in database management to use cookies. Furthermore, in many

web programming languages, such as PHP, functionality for creating, assigning data,

and accessing cookies is already built in, so you don't have to worry about building

your own library to access them.

Overall, cookies should be used to store small pieces of information that can be

used to personalize small parts of a web page to improve a user's experience. They

can also be used to allow users to resume their previous interaction with your ap-

plication, creating the illusion that they're still logged in.

Cookies and Security

It's important to remember not to store sensitive data in cookies due to the fact

they're sent to the web server each time a page request is made, and can be accessed

by tech-savvy computer attackers.

In addition, because they're stored on the user's computer, there's very little we,

as developers, can do to protect the cookies. Because of this, cookies should ideally

only store data that can be used by an application to identify information that's

stored in databases or other secure storage options, as opposed to storing the data

in the cookie itself.

Sessions
Sessions combine the usefulness of cookies with the security and manageability of

the web server. Unlike with a cookie, specific variable data and information is not

directly stored on the user's computer. The data itself is actually stored on the web

server that houses and processes the website or web application.

Sessions are very unlike any other variables we have looked at so far, as they don't

pass the data directly between the pages requested by the browser—instead, the

data is retrieved from the session we initiate at the beginning of each page. As

mentioned previously, sessions use a cookie stored on the client's computer to

identity the correct user with their data stored in a session. This cookie doesn't hold

any personal information, nor does the data make any sense unless compared with

the data stored on the web server; usually it comes in the form of a key such as

350401be75bbb0fafd3d912a1a1d5e54. For this reason, the data security of sessions

is of a higher level than when using cookies alone.

Jump Start PHP92

While this method of storing data on both the client's computer and the server may

seem a bit clumsy, it actually has its advantages:

■ Sessions don't have a limit on the amount of data you can store in them. This is

because sessions are stored on the server so they don't impact negatively on the

server's bandwidth.

■ Because session data is stored on a web server and not on the user's computer,

this allows you to focus your security efforts on your web server, rather than

applying encryption methods which fit into the storage capabilities of user's

browser.

One thing to remember with sessions is that you can specify how long they stay

alive, or active. We call this "time-to-live" and it's usually configured for the session

to expire or die after a user has closed the browser or tab that initiated the session

with the web server. So, for example, if a user logs into a social media application,

when they are finished using it and close their browser, the session, if configured

to do so, will automatically remove its data for that user—a very useful feature.

Sessions and Cookies in PHP
Now that we've covered the reasons for using sessions and cookies, as well as the

main differences between them, it's time we start to look at how to implement them

in PHP.

Both sessions and cookies can be accessed and loaded by special variables dedicated

to these particular methods. In PHP, we express the intent to use and manipulate

a cookie by using the superglobal variable $_COOKIE. Sessions are used in a similar

way through the $_SESSION superglobal.

First, let's focus on writing and using cookies.

Cookies in PHP
There are special functions we must use to assign data to cookies. Let's create a new

file in our experiments folder and name it storage.php. Once this file has been created,

add the following code to it:

93Sessions and Cookies

<?php
$expire = time() + 60 * 60 * 24 * 30;
➥// This equals to the time now plus 30 days in the future
setcookie("user", "Joe Public", $expire);
if (isset($_COOKIE["user"])) {
 echo "Welcome " . $_COOKIE["user"] . "!";
} else {
 echo "Welcome guest!";
}

isset()

The isset() function checks to see if a variable or element has been assigned a

value. In the code above, isset() will make sure a key in $_COOKIE has a value

before letting the if statement continue.

If you now take your browser and navigate to the storage.php file, you can see that

our script hasn't detected our "Joe Public" name, and actually thinks we're a guest.

This is because the cookie is set by the setcookie() function—this tells PHP to set

a cookie in our browser along with the data to be stored, and the cookie's lifespan,

after the PHP engine has rendered the whole PHP script first. When we first access

the script with our code in the browser, there'll be no cookie for PHP to detect and

retrieve data from. That's because the PHP will be processed on our server. However,

the cookie is being set in our browser—that happens after the server is finished

processing our PHP script. Therefore, we won't see the cookie's data the first time

we load the page.

Refresh the storage.php file, and we'll see that the cookie's data has now been collec-

ted by PHP, and is displaying the "Joe Public" data we entered into the setcookie()

function. You may also notice that the first argument passed into this function is

the name argument, which sets the name of the cookie. We then use this argument

to tell PHP which individual cookie we want to load in order to obtain the data we

want from it. The second argument, as we've already covered, is the data we want

to store in this cookie. In our example above, it's the string "Joe Public". The last

argument in the function is where we set how long we want the cookie to stay alive.

Usually cookies are required to have a lifespan set—a time and date after which the

browser will destroy them. However, it's worth remembering that cookies used by

sessions don't require a specific time-to-live date or time as theirs is controlled by

the session's time-to-live.

Jump Start PHP94

In our code, we set the expiration time and date for the cookie, and stored it in the

$expire variable, located in the first line of our code. Note we have used the time()

PHP function. This allows us to obtain the time and date when our script is visited

by a browser and rendered by PHP. The time() function actually returns the number

of seconds that have elapsed since midnight GMT Jan 1 1970 as a number. So, instead

of returning a date in a readable format, such as "May 14 12:50", time() returns a

number, such as 1368553800. For more information on the time() and date()

functions in PHP, please see the PHP manual's documentation2.

It's also important to note that data from cookies will be sent to the server on every

page request. If your script sends out HTML before your script sends out any cookie

data, or sets any cookie data to be sent to the server, PHP will throw an error. It's

important to make sure that you set and send your cookie data at the start of your

script. However, you can retrieve data from a cookie further on in your script, after

HTML has been sent to the browser. This will not throw a PHP error (as long as the

cookie exists and has data). I highly suggest you take the time to read my SitePoint

article for further reading on cookies in PHP3.

Sessions in PHP
Now that we know the basics of how to write and use cookies, we're going to look

at how to use and write sessions. Just like cookies, this method makes use of a

special superglobal variable, with which we assign data to, and obtain data from,

sessions: $_SESSION.

Sessions work in a similar way to cookies, but have a specific process for assigning

data that's quite different from the way a cookie's data is set. Initially, we need to

tell PHP we'd like to use a session, which we do with the session_start() function.

We also have the option to remove session variables individually, and collectively,

using functions such as session_unset() and session_destroy(). Here is a basic

example of how we start a session, add data to it, and retrieve that data using the

$_SESSION variable we spoke about earlier:

2 http://php.net/manual/en/book.datetime.php
3 http://www.sitepoint.com/php-sessions/

95Sessions and Cookies

http://php.net/manual/en/book.datetime.php
http://www.sitepoint.com/php-sessions/
http://www.sitepoint.com/php-sessions/

<?php
session_start();
$_SESSION["username"] = "myusername";
echo "Username = " . htmlspecialchars($_SESSION["username"]);

As you can see, we start the session, create a new session variable titled username

and set the string "myusername" to that variable. Finally, we display the string stored

in the session variable in the browser. This is only a basic example because, if we

were using this code in a real project,we'd actually spread it over two files—the

first starting the session and creating the username session variable, and a second

also starting a session, but then displaying the string stored in the session variable.

It's important that you end a session when you've finished using it. Despite the fact

that sessions are used for temporary data storage, they can still be vulnerable to at-

tack. Ending a session helps to ensure maximum security when dealing with poten-

tially sensitive information. To do this, we simply add the session_destroy()

function to our code once we are finished, like so:

<?php
session_start();
$_SESSION["username"] = "Username";
echo "Username = " . $_SESSION["username"];
session_destroy();

It's highly recommended that you end a session once you're finished and have no

further need for it in your code, in order to stop malicious code being injected into

your PHP scripts.

If we don't want to end the session but, instead, remove a piece of data from it, we

can use the unset() function. Here's an example of unset() in action:

<?php
session_start();
unset($_SESSION["username"]);

We can also unset all sessions and their values by using the session_unset()

function. So, if we change our short example from the above, we can use

session_unset() like so:

Jump Start PHP96

<?php
session_start();
session_unset();

Don't Keep Sensitive Data in Sessions

Earlier in the chapter we discussed how cookies shouldn't be used to store sensitive

data, even temporarily. That same advice can also be applied to sessions, even

though they're considered more secure than cookies. While sessions' data is stored

on the web server and not on the user's computer, sessions can also be a target for

attackers and hackers. As such it's also recommended that you don't use sessions

to store sensitive data.

Project
So now that we've covered the use of sessions and cookies, it's time we started filling

out the shell of our project so it becomes a fully functional blog platform. To begin

with, let's start by taking our login.php file in the includes folder, and adding to it.

We'll start by editing the index() method:

public function index() {
 if (!empty($_GET['status']) && $_GET['status'] == 'logout') {
 session_unset();
 session_destroy();
 $error = 'You have been logged out. Please log in again.';
 require_once 'admin/templates/loginform.php';
 } elseif (!empty($_SESSION['kickstart_login']) &&
➥$_SESSION['kickstart_login']) {
 header('Location: ' . $this->base->url .
➥ '/admin/posts.php');
 exit();
 } else {
 if ($_SERVER['REQUEST_METHOD'] === 'POST') {
 $this->validateDetails();
 } elseif (!empty($_GET['status'])) {
 if ($_GET['status'] == 'inactive') {
 session_unset();
 session_destroy();
 $error = 'You have been logged out due to
➥inactivity. Please log in again.';
 }

97Sessions and Cookies

 }
 require_once 'admin/templates/loginform.php';
 }
}

What we've changed in the index() method is to introduce sessions into our login

script. This use of sessions allows us to track how active our user has been in the

admin panel and, if they've become idle, our application will proceed to log them

out, in an attempt to increase security.

We have also added a logout process which will destroy any active session if the

user has chosen to log out—again in an attempt to increase security, as well as to

allow our user to take control of their session access to the admin panel.

Finally, we've also added a conditional if statement to check whether the user is

returning to the admin panel, and if they still have an active login session. If so,

our application will not ask them to log in again, improving the user experience

when using our application.

Next we take a quick look at the loginSuccess() method:

public function loginSuccess() {
 $_SESSION['kickstart_login'] = true;
 $_SESSION["timeout"] = time();
 header('Location: ' . $this->base->url . '/admin/posts.php');
 return;
}

Here, all we've added is two new session variables and their respective data, once

the user, having logged, has been allowed access to the admin panel. Our application

uses both of these session variables to deduce if the current user is logged in during

their use of the application's admin panel, and to work out how active they are

while using it.

Those are the only things we'll be changing in the login.php script, so next, let's

take a look at the admin.php file that's also in our includes folder. To begin with,

we're going to add to the Adminpanel's constructor, as well as adding some code at

the start of our file:

Jump Start PHP98

<?php
session_start();
require_once 'database.php';
class Adminpanel {
 public function __construct() {
 $inactive = 600;
 if (isset($_SESSION["kickstart_login"])) {
 $sessionTTL = time() - $_SESSION["timeout"];
 if ($sessionTTL > $inactive) {
 session_unset();
 session_destroy();
 header("Location: http://" . $_SERVER['SERVER_NAME']
➥ . "/login.php?status=inactive");
 }
 }
 $_SESSION["timeout"] = time();
 $login = $_SESSION['kickstart_login'];
 if (empty($login)) {
 session_unset();
 session_destroy();
 header('Location: http://'.$_SERVER['SERVER_NAME']
➥.'/login.php?status=loggedout');
 } else {
 $this->ksdb = new Database;
 $this->base = (object) '';
 $this->base->url = 'http://'.$_SERVER['SERVER_NAME'];
 }
 }
}

To begin with, we've added the session_start() function at the top of our file to

begin the session each time a user's browser requests a page within the admin panel.

Then, with the code we've added to the constructor, our Adminpanel class checks

first to see how active our user's been throughout the admin panel, and if they've

become idle, our application logs them out by killing their session and returning

them to the login screen. If they're still active, the class will then check to see if the

user has made a request to log out, or if they are trying to access the admin panel

directly without logging in first. In either case, the user will be redirected back to

the login screen to log in. Finally, if the user has already logged in and has an active

session, the class will start to load up everything it needs to render the admin panel

correctly.

99Sessions and Cookies

Next, let's look at the Posts class, which extends the Adminpanel class:

public function __construct() {
 parent::__construct();
 if (!empty($_GET['action'])) {
 switch ($_GET['action']) {
 case 'create':
 $this->addPost();
 break;
 default:
 $this->listPosts();
 break;
 case 'save':
 $this->savePost();
 break;
 case 'delete':
 $this->deletePost();
 break;
 }
 } else {
 $this->listPosts();
 }
}

Here, we've added a new case in the switch conditional. This checks whether the

action URL variable contains the string delete. If so, our application then needs

to load up a new method titled deletePost(). So let's go ahead and add that

method into the bottom of the class now:

public function deletePost() {
 if (!empty($_GET['id']) && is_numeric($_GET['id'])) {
 $query = "DELETE FROM `posts` WHERE id = ?"
 $stmt = $this>db->prepare($query);
 $stmt->execute(array($_GET['id']));
 $delete = $stmt->rowCount();
 $this->db = null;
 if (!empty($delete) && $delete > 0) {
 header("Location: " . $this->base->url .
➥"/posts.php?delete=success");
 } else {
 header("Location: " . $this->base->url .
➥"/posts.php?delete=error");

Jump Start PHP100

 }
 }
}

Above, we've added the functionality required to allow us to delete posts with the

Delete action button (which we see when the admin panel lists all of our posts). To

do this, not only have we added the required functionality to the deletePost()

method, but we've also added the code in the Posts constructor necessary to detect

the delete method when it's requested in the URL. We've done this by adding a

new switch case in the Posts constructor to identify from the URL variable which

action we want to take with the post we've selected from the admin panel. We've

also added functionality in both the constructor and editPosts() method to allow

us to edit posts that have already been created.

Finally, we need to update the savePost() method:

public function savePost() {
 $array = $format = $return = array();
 if (!empty($_POST['post'])) {
 $post = $_POST['post'];
 }
 if (!empty($post['content'])) {
 $array['content'] = $post['content'];
 $format[] = ':content';
 }
 $cols = $values = '';
 $i=0;
 foreach ($array as $col => $data) {
 if ($i == 0) {
 $cols .= $col;
 $values .= $format[$i];
 } else {
 $cols .= ','.$col;
 $values .= ','.$format[$i];
 }
 $i++;
 }
 try {
 // This query has an SQL injection vulnerability
 $query = $this->ksdb->db->prepare("INSERT INTO posts
➥(".$cols.") VALUES (".$values.")");
 for ($c = 0; $c < $i; $c++) {

101Sessions and Cookies

 $query->bindParam($format[$c], ${'var'.$c});
 }
 $z=0;
 foreach ($array as $col => $data) {
 ${'var' . $z} = $data;
 $z++;
 }
 $result = $query->execute();
 $add = $query->rowCount();
 } catch (PDOException $e) {
 echo $e->getMessage();
 }
 $query->closeCursor();
 $this->db = null;
 if (!empty($add)) {
 $status = array('success' => 'Your post has been saved
➥successfully.');
 } else {
 $status = array('error' => 'There has been an error saving
➥your post. Please try again later.');
 }
 header("Location: http://localhost/kickstart/admin/posts.php");
}

Our update to the savePost() method enables our application to handle an extra

field when we create or edit our posts. This new field allows us to enter a title for

our blog posts. Until now, our blog post titles have been nothing more than unique

id numbers. However, since we've now created a new field for our blog post, this

means we need to add a new column to our posts table inside our database, which

you'll need to do either through a MySQL query or by using the phpMyAdmin GUI

interface. It's recommended that you set this column to have the type of VARCHAR,

and a length of around 100. This should allow plenty of room to write any title they

wish. Once this is done, your posts table should look like Figure 5.1.

Figure 5.1. Our posts table

Jump Start PHP102

The next step is for us to update the template manageposts.php:

<?php require_once '_inc/header.php'; ?>
<a href="<?php echo $this->base->url . '/posts.php?action=create';
➥ ?>" class="btn btn-info">Create Post
<a href="<?php echo $this->base->url . '/comments.php'; ?>" class=
➥"btn btn-info">Comments
<table>
 <thead>
 <tr>
 <td>Post Title</td>
 <td>Post Content</td>
 <td>Actions</td>
 </tr>
 </thead>
 <tbody>
 <?php foreach($posts as $post): ?>
 <tr>
 <td><h3><?php echo (!empty($post['title']) ?
➥htmlspecialchar($post['title']) : 'Post #' . htmlspecialchar
➥($post['id'])); ?></h3></td>
 <td><p><?php echo implode(' ', array_slice(explode(' ',
➥ strip_tags($post['content'])), 0, 10)); ?> [...]</p></td>
 <td><a href="<?php echo $this->base->url . "/posts.php
➥?id=" . $post['id'] . "&action=edit"; ?>" class="btn btn-primary">
➥Edit Post<a href="<?php echo $this->base->url . "/posts.php?
➥id=" . $post['id'] . "&action=delete"; ?>" class="btn btn-primary
➥">Delete Post</td>
 </tr>
 <?php endforeach; ?>
 </tbody>
</table>
<?php require_once '_inc/footer.php'; ?>

Now our template file has an added field, in which we can add titles for our posts.

It will connect with the code we've added in the savePost() method, so the data

can be added to the database.

We also need to add this new title field to the newpost.php template, which we use

to create our posts. The file should now look like this:

103Sessions and Cookies

<?php require_once '_inc/header.php'; ?>
<form action="<?php echo $this->base->url . '/posts.php?action=save'
➥; ?>" class="row" method="POST">
 <section class="span7">
 <h3>New Post</h3>
 <div class="control-group">
 <label class="control-label" for="content">Title</label>
 <div class="controls">
 <input type="text" name="post[title]" id="title"
➥placeholder="Your Post Title" />
 </div>
 </div>
 <div class="control-group">
 <label class="control-label" for="wmd-input">Content
➥</label>
 <div class="wmd-panel controls">
 <div id="wmd-button-bar"></div>
 <textarea class="wmd-input" name="post[content]"
➥ id="wmd-input">*Start Typing Here*</textarea>
 </div>
 </div>
 <div class="control-group">
 <div class="controls">
 <button type="submit" class="btn">Save Post</button>
 </div>
 </div>
 </section>
 <section class="span4" style="padding-left:20px; border-left:1px
➥ solid #eee;">
 <div id="wmd-preview" class="wmd-panel wmd-preview"></div>
 </section>
</form>
<?php require_once '_inc/footer.php'; ?>

In addition to adding an extra field for the user to insert a title to their posts, we've

also changed the text area where they enter the content; we've changed it so that it

has become a markdown-aware input field. For those unfamiliar with markdown4,

it's a simple plain text markup syntax designed to make it easy to add formatting

to content. A markdown engine then converts the content to use valid HTML

formatting.

4 http://daringfireball.net/projects/markdown/

Jump Start PHP104

http://daringfireball.net/projects/markdown/

For our project, we're going to use an easy-to-implement JavaScript Markdown

converter and editor called Pagedown5. To implement the library you need to load

the three Pagedown libraries: Markdown.Converter, Markdown.Sanitizer and

Markdown.Editor, in that order. Once you have these libraries loaded, you initialize

the libraries by adding the following code to the <head> tag in your header.php

template file:

<script>
 (function () {
 var converter = new Markdown.Converter();
 var editor = new Markdown.Editor(converter);
 editor.run();
 }());
</script>

You will also need to ensure you have the correct elements to load up the editor's

format buttons, as well as giving your text area the correct class for the libraries to

work out where to load the text format code. In addition, the libraries need to know

where to display the preview of your post while you type in the content and the

formatting.

We've already added both of these elements and their required classes to the template

above. let;s take a look at the code we added. Here's the code for the formatting

buttons and text entry :

<div class="wmd-panel controls">
 <div id="wmd-button-bar"></div>
 <textarea class="wmd-input" name="post[content]"
➥id="wmd-input">*Start Typing Here*</textarea>
</div>

And the code for the preview area:

5 http://code.google.com/p/pagedown/

105Sessions and Cookies

http://code.google.com/p/pagedown/

<section class="span4" style="padding-left:20px; border-left:1px
➥solid #eee;">
 <div id="wmd-preview" class="wmd-panel wmd-preview"></div>
</section>

You can identify which areas are required by the Pagedown libraries by looking for

elements that have the prefix wmd before their ids and/or classes. Once these libraries

are loaded, you should be able to start typing your post content, as well as some

markdown formatting, into the editor area, as shown in Figure 5.2.

Figure 5.2. Writing a post in the text editor

You should also notice that we have a new button added to the top of the template

file called Comments. This new button, when clicked, will take the user to a comment

management panel where they can view all the comments added to our posts, as

well as delete comments they don't want on the blog. To get this running, what we

need to do first is to create a new table in our database where users' comments will

be stored. Set up a new table in your database as shown in Figure 5.3.

Jump Start PHP106

Figure 5.3. Our comments table

To get this section of the admin panel up and running, let's open up our admin.php

file in the includes folder again and amend the code to the constructor to begin

with:

public function __construct() {
 parent::__construct();
 if (!empty($_GET['action']) && $_GET['action'] == 'delete') {
 $this->deleteComment();
 } else {
 $this->listComments();
 }
}

As we can see, our constructor now checks for a URL variable title action and

checks if the variable exists, and if it holds the string delete. If so, our application

will load up the deleteComment() method, and if not, it'll load the listComments()

method. So let's build these methods, starting with listComments():

public function listComments() {
 $comments = $return = array();
 $query = $this->ksdb->db->prepare("SELECT * FROM comments");
 try {
 $query->execute();
 for ($i = 0; $row = $query->fetch(); $i++) {
 $return[$i] = array();
 foreach ($row as $key => $rowitem) {
 $return[$i][$key] = $rowitem;
 }
 }
 } catch (PDOException $e) {
 echo $e->getMessage();

107Sessions and Cookies

 }
 $comments = $return;
 require_once 'templates/managecomments.php';
}

In this method, our application loads up all the comments from the comments table

in our database using PDO. Once the comments are collected from the database,

they're loaded into an array with a unique key for each comment. If there's a problem

connecting to the database, or with our database PDO query, our application will

fire back an error message. Finally, the method loads up the template file manage-

comments.php. Now we just need to create the deleteComment() method:

public function deleteComment() {
 if (!empty($_GET['id']) && is_numeric($_GET['id'])) {
 $query = "DELETE FROM `comments` WHERE id = ?";
 $stmt = $this->db->prepare($query);
 $stmt->execute(array($_GET['id']));
 $delete = $result->rowCount();
 $this->db = null;
 if(!empty($delete) && $delete > 0){
 header("Location: ".$this->base->url."/
➥comments.php?delete=success");
 }else{
 header("Location: ".$this->base->url."/
➥comments.php?delete=error");
 }
 }
}

Our deleteComment() method is very similar to our deletePost() method from

the Posts class except, this time, our application is looking for the URL variable id

to contain the id of the comment in relation to its row in our database. We also have

a if conditional statement to redirect back to the admin's comments panel with the

correct status message—success or error—to let the user know if the attempt to delete

a comment has worked or not.

Our next step is to create our template to list the comments in our admin panel,

which we will title managecomments.php. Once we've created this file, we need to

add the following code to our template:

Jump Start PHP108

<?php require_once '_inc/header.php'; ?>
<a href="<?php echo $this->base->url . '/posts.php?action=create';
➥?>" class="btn btn-info">Create Post
<a href="<?php echo $this->base->url . '/comments.php'; ?>"
➥class="btn btn-info">Comments
<table cellpadding="10">
 <thead>
 <tr>
 <td>Commenter</td>
 <td>Post ID</td>
 <td>Comment</td>
 <td>Actions</td>
 </tr>
 </thead>
 <tbody>
 <?php foreach($comments as $comment): ?>
 <tr>
 <td><h4><?php echo htmlspecialchar($comment['name']);
➥ ?></h4></td>
 <td><p><?php echo htmlspecialchar($comment['email']);
➥ ?></p></td>
 <td><p><?php echo htmlspecialchar($comment['comment']);
➥ ?></p></td>
 <td><a href="<?php echo $this->base->url . "/comments.
➥php?id=" . htmlspecialchar($comment['id']) . "&action=delete";
➥?>" class="btn btn-primary">Delete Comment</td>
 </tr>
 <?php endforeach; ?>
 </tbody>
</table>
<?php require_once '_inc/footer.php'; ?>

With that code added, you should now have a working admin panel, as shown in

Figure 5.4. Feel free to use the admin panel to create some posts.

109Sessions and Cookies

Figure 5.4. Our admin panel in action

Once you've finished testing your admin panel, it's time to add the finishing touches

to our blog platform, and start creating the final functionality for the front-end section

of our project.

First, we need to add a new library to our front end so that the public side of our

blog converts the markdown formatting into valid HTML. To do this, we add Michel

Fortin's PHP markdown library6. This is very easy to install and will render our

markdown perfectly, plus it's written in pure PHP, so we don't need to worry about

installing additional software on our server. We just need to call the library when

we want to convert markdown formatting to HTML.

Download the library and move the markdown.php file to the includes directory

within your project's main directory. Next, open up the main posts.php file from

your project's includes directory and insert the following code:

public function viewpost($postid) {
 $id = $postid;
 $posts = $this->ksdb->dbselect('posts', array('*'), array('id'
➥=> $id));
 $markdown = new Michelf\Markdown();
 $posts[0]['content'] = $markdown->defaultTransform($posts[0][
➥'content']);
 $postcomments = $this->comments->getcomments($posts[0]['id']);

6 http://michelf.ca/projects/php-markdown/

Jump Start PHP110

http://michelf.ca/projects/php-markdown/

 $template = 'view-post.php';
 include_once 'frontend/templates/'.$template;
}

We've included the new markdown library at the start of our script, ready for us to

use when the application needs to render data in the markdown format. We've also

changed the functionality in our getposts() method, as well as our viewpost()

method, and we are now loading our Comments class in our constructor.

Let's start by looking a little closer at the code we've added to the two methods. In

getposts()we've added a new foreach loop, which will call the commentnumber()

method in our Comments class. We still need to add this method into the class, so

let's keep that in mind and take a quick look at the viewpost() method. Here, we're

loading the markdown class from the markdown library, and attributing this class to

the variable $markdown, turning it into an object.

You'll notice the call to the markdown library is quite different from how we have

called classes before; that is because Michel has used a namespace in his library.

A namespace helps to establish a unique identifier for a class. This avoids potential

clashing when two classes are loaded with the same name. Namespacing was intro-

duced in PHP 5.3. It's a feature that is starting to gain popularity, as it helps to solve

naming complications when creating libraries for public use. Namespaces can be

applied to classes like so:

<?php
namespace Project;
class myProject {
 function index() {
 echo 'Loading a method from a class with a namespace!';
 }
}

They're very simple to implement, but can make a huge improvement to code inter-

operability. For example, the markdown PHP library is using the namespace Michelf,

so to load the library's class and its methods into our scripts, we just need to have

the namespace appear in our script before we call the class. In this case, instead of

writing:

$markdown = new Markdown();

111Sessions and Cookies

we have to write:

$markdown = new Michelf\Markdown();

More on Namespaces

For more information on namespaces, please see the PHP manual7 and this article

on SitePoint8.

Now that we have our markdown PHP library implemented, we can use it to trans-

form posts that are written in markdown syntax into fully rendered HTML.

The last new piece of code we've added is a call to another method in our Comments

class, which we've yet to code. This method is getcomments(), which will get our

application to load up all the comments for a specific post.

Let's start by opening up the comments.php file from within the "frontend" directory.

Amend the code as follows:

<?php
require_once 'frontend/posts.php';
class Comments extends Blog {
 public function __construct() {
 parent::__construct();
 if ($_SERVER['REQUEST_METHOD'] === 'POST' && !empty($_POST[
➥'comment'])) {
 $this->addcomment();
 }
 }

Our constructor for this class loads everything we need from the parent class's

constructor (which is the constructor from the Blog class) then checks to see if

there's a post request to submit a new comment. If there is, the application will then

fire the addcomment() method. This method is where we take all the data posted

from the comments form and prepare it for entry into our comments database using

the dbadd() method from the PDO database library.

7 http://php.net/manual/en/language.namespaces.php
8 http://www.sitepoint.com/php-namespaces/

Jump Start PHP112

http://php.net/manual/en/language.namespaces.php
http://www.sitepoint.com/php-namespaces/
http://www.sitepoint.com/php-namespaces/

public function commentnumber($postid) {
 $query = $this->ksdb->dbselect('comments', array('*'),
➥ array('postid' => $postid));
 $commentnum = count($query);
 if ($commentnum <= 0) {
 $commentnum = 0;
 }
 return $commentnum;
 }
 public function getcomments($postid) {
 return $this->ksdb->dbselect('comments', array('*'), array
➥('postid' => $postid));
 }

You can also see we have our method getcomments(),which requires that a variable

containing a post id is passed to the method. Any data that needs to be passed to a

method before it can be processed correctly, can be placed in parentheses after the

method name. The method collects all the comments attributed to a post based on

the id passed to the method, and returns them to the variable attributed when this

method was called. This means that if data is passed to the method, PHP will throw

an error:

public function addcomment() {
 $status= '';
 $array = $format = array();
 if (!empty($_POST['comment'])) {
 $comment = $_POST['comment'];
 }
 if (!empty($comment['fullname'])) {
 $array['name'] = $comment['fullname'];
 $format[] = ':fullname';
 }
 if (!empty($comment['email'])) {
 $array['email'] = $comment['email'];
 $format[] = ':email';
 }
 if (!empty($comment['context'])) {
 $array['comment'] = $comment['context'];
 $format[] = ':context';
 }
 if (!empty($comment['postid'])) {
 $array['postid'] = $comment['postid'];
 $format[] = ':postid';

113Sessions and Cookies

 }
 $add = $this->ksdb->dbadd('comments', $array, $format);
 if (!empty($add) && $add > 0) {
 $status = array('success' => 'Your comment has been
➥submitted');
 $key = 'success';
 } else {
 $status = array('error' => 'There has been an error
➥submitting your comment. Please try again later.');
 $key = 'error';
 }
 header('http://localhost/kickstart/?id=' . $comment['postid']);
 }
}

We also have the commentnumber() method, which requires a post id to be passed

to it before it can be executed. This counts all the comments that are attached to

the post id passed to the method, and returns this number.

We now have the Comments class up and running. All we need to do is tweak our

list-posts.php template to show how many comments our posts have—as well as the

post's new titles—and add a section in our view-post.php template to allow visitors

to submit comments (and again, show the new post title).

Let's start with the list-posts.php file. Open it and add the following code:

<?php require_once 'includes/temps/header.php'; ?>
<?php foreach ($posts as $post): ?>
 <h3><?php echo (!empty($post['title']) ? htmlspecialchar($post
➥['title']) : 'Post #' . htmlspecialchar($post['id'])); ?></h3>
 <p><?php echo implode(' ', array_slice(explode(' ',
➥strip_tags($post['content'])), 0, 10)); ?> [...]</p>
 <a href="<?php echo $this->base->url . "/?id=" . $post['id']
➥; ?>" class="btn btn-primary">Read More<p>comments: <?php echo
➥ $post['comments']; ?></p>
 <hr/>

Jump Start PHP114

<?php endforeach; ?>

<?php require_once 'includes/temps/footer.php'; ?>

Now we have a small section, which shows the number of comments each post has,

as well as the post's title and a short excerpt of each post's content each time it's

listed.

Finally, let's add to our view-post.php template:

<?php require_once 'includes/temps/header.php'; ?>

<a href="<?php echo $this->base->url; ?>" class="btn btn-primary">
➥Return to Post List
<article>
<?php foreach($posts as $post): ?>
 <h3><?php echo (!empty($post['title']) ? htmlspecialchar($post
➥['title']) : 'Post #' . htmlspecialchar($post['id'])); ?></h3>
 <?php echo $post['content']; ?>
 <hr/>
<?php endforeach; ?>
<h3>Comments</h3>
<?php foreach ($postcomments as $comment): ?>
 <section class="span3">
 <figure>
 <img src="http://www.gravatar.com/avatar/<?php echo md5
➥($comment['email']); ?>" alt="">
 </figure>
 <h4><?php echo htmlspecialchar($comment['name']); ?></h4>
 <p><small><?php echo htmlspecialchar($comment['email']); ?>
➥</small></p>
 </section>
 <section class="span8">
 <p><?php echo htmlspecialchar($comment['comment']); ?></p>
 </section>
 <hr style="clear:both;"/>
<?php endforeach; ?>

In this code, we've added a section that now displays the post title at the top of each

post, as well as an area that shows each submitted comment. I should note that,

when adding the section to show the blog post title, there's a conditional to check

if the blog post has a title. If not, our script will display the blog post number, as

115Sessions and Cookies

well as the string "Post #", to give each post a fallback title in case it hasn't been

given one. It's important to make sure that, when you're calling data in your scripts

that may not always be there, you have a fallback so PHP doesn't display errors on

your live site or application.

<h3>Leave Comment</h3>
<form action="<?php echo htmlspecialchars($_SERVER['PHP_SELF']); ?>"
➥method="post" class="form-horizontal">
 <input type="hidden" value="<?php echo $_GET['id']; ?>" name=
➥"comment[postid]" />
 <div class="control-group <?php echo (!empty($error)? 'error':
➥ ''); ?>">
 <label class="control-label" for="email">Email</label>
 <div class="controls">
 <input type="email" name="comment[email]" id="email"
➥placeholder="Your Email Address"/>
 </div>
 </div>
 <div class="control-group <?php echo (!empty($error) ? 'error' :
➥ ''); ?>">
 <label class="control-label" for="name">Full Name</label>
 <div class="controls">
 <input type="text" name="comment[fullname]" id="name"
➥placeholder="Your Full Name"/>
 </div>
 </div>
 <div class="control-group <?php echo (!empty($error) ? 'error' :
➥ ''); ?>">
 <label class="control-label" for="comment">Comment</label>
 <div class="controls">
 <textarea id="comment" name="comment[context]">
➥</textarea>
 </div>
 </div>
 <div class="control-group">
 <div class="controls">
 <button type="submit" class="btn">Submit Comment
➥</button>
 </div>
 </div>

Jump Start PHP116

</form>
</article>
<?php require_once('includes/temps/footer.php'); ?>

In our code above, we've added a brand new form for visitors to the blog to leave a

comment on a blog post. The form will submit the data—using the post method—to

itself where our application will then be able to process the data, and save it to the

database using the addComment() method. We've also added if statements for each

of the input fields in the form in case the user has forgotten to fill in a field when

they tried to submit their comment. We also have a hidden field, which holds the

id of the post—something we need in order to save the comment to the database

correctly.

Using Gravatar for User Avatars

One thing to note is that we have added a link to Gravatar9 to place the user's

avatar next to the comment. Gravatar is a free service, which allows users to upload

an avatar image to an online server and attribute their personal email address to

it. This enables developers to code into their applications a call to the Gravatar

server to collect an avatar that may be connected to a user's email address they've

been supplied with.

The call to the Gravatar server is free, and means you don't have to store avatar

images yourself. Gravatar's goal is to provide a quick and easy solution to keep

everyone's avatars up to date and consistent. If a user doesn't have an avatar set

on Gravatar, it will return a default blank avatar instead. Each email address is

encoded using a basic method, so we're required to encode the user's email address

using md5 encryption; we've done this in our code in order to retrieve the avatar

from Gravatar's servers.

9 http://en.gravatar.com/

117Sessions and Cookies

http://en.gravatar.com/

Figure 5.5. Our blog, now with comments!

Returning to our code, at the bottom of our template, we have a new form area where

users can enter data about themselves, as well as submitting a comment to be at-

tached and displayed on the blog post.

Now all we need to do is save this template and we should have a fully working

blog platform complete with comments, as shown in Figure 5.5. Congratulations!

Summary
Sessions and cookies are vital when you want to add user accounts into a PHP ap-

plication. They are powerful developer tools for personalizing data displayed in

the browser, as they can quickly and effectively identity users through data stored

on the user's computer. For user accounts in applications, cookies and sessions are

vital to create logged in statuses, which we have implemented for our admin panel

Jump Start PHP118

in our application. However, it's important to remember the potential security risks

that come with using cookies and sessions, and it's also important to implement

code that will reduce the security risk.

For more information on using sessions and cookies, please see the following articles:

■ http://www.sitepoint.com/php-sessions/

■ http://www.sitepoint.com/baking-cookies-in-php/

■ http://www.php.net/manual/en/book.session.php

■ http://php.net/manual/en/features.cookies.php

Now that we have a working blog platform, we're about to enter the final chapter.

There, we'll look at different areas in PHP where we can improve security, and

where we could potentially add parts to our blog platform were we to extend the

application's functionality and processing.

119Sessions and Cookies

http://www.sitepoint.com/php-sessions/
http://www.sitepoint.com/baking-cookies-in-php/
http://www.php.net/manual/en/book.session.php
http://php.net/manual/en/features.cookies.php

Chapter6
PHP and Security
Testing and security are two of the most important elements of application develop-

ment. You may be able to create the most impressive application ever seen, but if

you don't ensure that it's bug free and secure from attackers, you're not finishing

the job.

In this chapter we'll be covering some basic methods to improve the security of

your PHP applications. It'd be impossible to cover every single possible implement-

ation in this short book, so it's also a good idea to check out the extra reading re-

sources provided, to build upon the techniques covered in this chapter.

php.ini and Security
We can start planting the seeds of sound security before we even start to build

anything in PHP. At the beginning of the book, we briefly touched on the PHP

configuration file php.ini. It enables us to configure a lot of PHP's behaviors, such

as how it handles file uploads, performs script caching, and, of particular interest

to us now, handling PHP's security.

Meddle at Your Own Risk!

Do not edit any settings if you are not 100% confident about how the changes will

impact your PHP installation. Diving in head first and editing settings without

knowing what you're doing could result in unexpected functioning.

Uneditable php.ini

Certain hosting providers may not let you access or edit the php.ini file. If you

can't access the directory in which the file is located, you should contact your

host and ask about making changes.

To locate your php.ini file, use the phpinfo() function to discover its location. Need

a quick refresher? We did this before in Chapter 1.

Once you've found the correct file, open it up in your text editor and you'll see a

huge amount of configuration options available. A handful of these, discussed below,

will help improve the security of your application.

allow_url_include

allow_url_include=Off

By default, the standard PHP installation has allow_url_include turned off, but

some hosting providers may have it turned on so it's important to check your php.ini

file.

With allow_url_include turned off, PHP can only load and execute other files that

reside on the web server's file system. However, if you activate allow_url_include,

you can include additional files via URL. This may seem like an interesting and

possibly useful feature to have turned on, but doing opens up your application to

the possibility of malicious code injection attacks. For this reason it's highly recom-

mended that this option remains turned off.

Jump Start PHP122

Code Injection

Code injection is the term used to describe when unwanted code from an external

source is placed into a PHP script without consent. For more information on code

injection, please see these external sources:

■ http://www.theserverpages.com/articles/webmasters/php/security/Code_Injec-

tion_Vulnerabilities_Explained.html

■ https://www.owasp.org/index.php/Code_Injection

A related setting is allow_url_fopen which should also be switched off.

open_basedir

open_basedir=/path/to/web/directory

Like allow_url_include, open_basedir can also help restrict files that scripts are

allowed to load on the server. With open_basedir, you can set which directory files

can be loaded from, and ensure that no file from outside that directory can be loaded

in any scripts.

One method would-be attackers attempt is to access the /etc/password file on a

Linux-based web server, which lists the registered user accounts on the server. If

your PHP application is run from /var/www, you can set open_basedir to

"/var/www/". Once set, files outside of the www directory cannot be included in

your scripts, stopping attackers in their tracks. Enable this option when your applic-

ation goes live to add an extra level of security to your server.

Error Management
During the development phase of a project it's useful to have PHP give you feedback

when it encounters any errors or problems in your code. However, once your applic-

ation is deployed, you really want these errors to be few and far between. Developers

will want to hide PHP error messages from the users because, if these errors are

seen they can give a sense of unreliability that impacts customer confidence.

Importantly, error messages can also give away vital information about your system's

configuration, which hackers can use to their advantage. PHP's default error messages

123PHP and Security

http://www.theserverpages.com/articles/webmasters/php/security/Code_Injection_Vulnerabilities_Explained.html
http://www.theserverpages.com/articles/webmasters/php/security/Code_Injection_Vulnerabilities_Explained.html
https://www.owasp.org/index.php/Code_Injection

can contain information such as the application's installation path, database con-

nection details, database column names, and other script details such as class names,

object IDs, and variable names.

To ensure this information is hidden from users, set the display_errors option in

php.ini to off. This tells PHP not to show errors during runtime when one occurs. It

doesn't mean that PHP will ignore the error—rather that it won't display it in the

browser.

You can still tell PHP to save any errors to a special log file, which you, the applic-

ation developer, can refer to in privacy. To do this, set the error_log option to a

path that's the location of the desired error log file.

It's also a good idea to turn the log_errors option on. This ensures that PHP will

log errors, save the error data, and avoid all possibilities of rendering the error

messages on the screen.

With these options set, PHP will privately create error logs for you to refer to when

needed.

Improving Session Security
Sessions, as discussed in the previous chapter, are a means of temporarily storing

data, such as whether a user is logged in or not. We're using sessions in our blog

application and, as you have probably noted already, they provide useful function-

ality. Sessions may often only hold a small amount of data, but any piece of data

related to gaining access to an application could potentially be gold dust to any at-

tacker or hacker. By default, sessions store information about your application's

users, and use cookies to help programming languages such as PHP match each

users with the correct session information. Unfortunately, sessions maintain the

login state that the attacker wants to achieve, which makes sessions one of the most

attractive targets for hackers.

One way that hackers can try to hijack a session is to access the session data itself.

Fortunately, php.ini comes to the rescue again and offers us the ability to change

the location in which the sessions data is kept through the option ses-

sion.save_path:

Jump Start PHP124

session.save_path = /var/lib/php

The example written above is the default. If you change the location, it will throw

hackers off the scent as they'll need to figure out where you've relocated the session

data to.

It's important to remember that, when you change this path, you ensure your web

server can read and write to the new location. Fail to do this and your PHP won't

be able to use sessions correctly, and will throw up errors!

Hackers will also often try to exploit your application and server through a technique

known as Cross Site Scripting1 (XSS for short), which allows them to inject malicious

JavaScript code into your application. Sessions are often the target in XSS attacks

and, if successful, they can do a variety of damage, from keyboard watching (where

a script notes down all the keys pressed, including those pressed for passwords and

login details) to forcing unauthorized advertisements ion your users for an attacker's

financial gain. To help prevent XSS attacks, you can use the following option:

session.cookie_httponly = 1

This option, when set to 1—as is the default in most php.ini files—will restrict

JavaScript from accessing cookies that have been created by PHP or for use with

sessions. It's highly advised that you turn this option on if you don't intend JavaScript

to use any data from cookies created in PHP, as it really does help to control the

flow of data from the client's computer to your application and the server upon

which it's hosted.

For more information on options within php.ini and how to make your PHP more

secure, please see the following sources:

■ http://www.sitepoint.com/a-tour-of-php-ini/

■ http://php.net/manual/en/ini.php

■ http://www.madirish.net/?article=229

1 https://en.wikipedia.org/wiki/Cross-site_scripting

125PHP and Security

https://en.wikipedia.org/wiki/Cross-site_scripting
http://www.sitepoint.com/a-tour-of-php-ini/
http://php.net/manual/en/ini.php
http://www.madirish.net/?article=229

Validating Submitted Data
One of the biggest threats to PHP applications is not the lack of protection from at-

tackers, but rather the threat of bad data submitted by users. Whether a user submits

incorrect data on purpose or by accident is often difficult to work out, but incorrectly

formatted data can harm your application.

It's important to ensure your users know what type of data they're supposed to

submit. Use the correct input elements for the type of data you're prompting for,

and make sure the labels clearly indicate what is expected.

Also, it's best practice to assume that, even if they have interacted with specifically

restrictive input fields in your HTML form, users may still submit data that's

formatted incorrectly. When the data is sent to your PHP script to be processed, it's

important to implement some type of validating script.

There are several PHP functions we can use for validation. The following code ex-

ample has been designed to check data that has been submitted by the user to see

if the correct data has been provided, helping to ensure that it's in a format that can

be used readily by the application:

<?php
$input = array();
➥// this is where all of the filtered data will be stored

// an input field with the name 'number'
➥ that accepts only numeric input
if (isset($_POST['number']) && is_numeric($_POST['input'])) {
 $input['number'] = $_POST['number'];
}
// an input field with the name 'date' that accepts
➥ a dd/mm/yyyy date
if (isset($_POST['date'])) {
 list ($dd, $mm, $yyyy) = explode('/', $input);
 if (checkdate ($mm,$dd,$yyyy)) {
 $input['date'] = $_POST['date'];
 }
}
// an input field with the name 'content' that accepts
➥arbitrary text
if (isset($_POST['content']) {

Jump Start PHP126

 // filter out any harmful HTML that may be in the string
 $input['content'] = strip_tags($_POST['content']);
}

// values in $input are safe to use in the application

In the example above, we inspect each of the incoming form values and place them

into a new array if they pass some basic validation checks. Those that fail are not

added to the $input array.

The is_numeric() function checks the contents of a string and will return true only

if it contains characters that make up a number. Numeric strings consist of an op-

tional leading sign (+ or -), any number of digits, and optionally a decimal part or

exponential part.

The checkdate() function checks the validity of the a given date and will return

true only if the arguments make up a valid date.

Finally, strip_tags() returns a string with HTML and PHP tags removed, leaving

only basic formatting HTML tags (such as line break
 tags) and plain text.

At the end of our validation checks, the values in $input can be used safely

throughout the rest of our application knowing that they're in the correct format.

However, forms are not the only type of data for which we need to consider imple-

menting validation. In the blog application we've built in this book, we've used URL

variables to load new sections of the application and execute specific scripts. URL

variables are often targeted by attackers because they're easy to manipulate and can

cause some very serious damage to apps that haven't implemented appropriate se-

curity measures.

We've already implemented a few security validation techniques in our application,

especially where we used URL variables to dictate which method or functionality

should be executed:

127PHP and Security

...
if (!empty($_GET['id']) && is_numeric($_GET['id'])) {

...

This example, taken from admin/posts.php, shows that we have the is_numeric()

function in place to ensure that the application continues to process the method

inside the if statement only if the required data from the URL is a number. It will

ignore any other values someone may try to pass through the URL.

Summary
In this chapter we've seen a brief overview of PHP security and looked at some basic

ways to avoid some of the most common vulnerabilities.

PHP security is a huge topic and we've only really scratched the surface here. It's

recommended that, every time you write a new function, imagine how someone

would be able to:

■ gain illicit access to any protected areas

■ disrupt, distort, or change data that the application is processing

■ break, alter, or effect in any negative way the process and/or functionality of the

application

It's also always worth thinking, during development, that a user may submit incorrect

or incorrectly-formatted data whenever user input is required. If you keep these

things in mind when you develop, you'll be able protect yourself from many of the

initial security problems your application may encounter.

For more information on implementing security methods, functionality, and scripts

into your PHP applications, please see:

■ http://www.sitepoint.com/top-10-php-security-vulnerabilities/

■ http://www.sitepoint.com/php-security-blunders/

■ http://www.php-security.net/

Jump Start PHP128

http://www.sitepoint.com/top-10-php-security-vulnerabilities/
http://www.sitepoint.com/php-security-blunders/
http://www.php-security.net/

Conclusion
In this short book we've had a brief taste of PHP development and created a simple

blogging platform. Everything we've discussed has been carefully chosen to help

inspire you to hone your PHP development skills.

This book should only be considered to be a starting point on your journey as a PHP

developer. A great resource for furthering your PHP skills is SitePoint's PHP channel,

http://www.sitepoint.com/php/, which offers a wide range of articles for the PHP

developer.

The function of good software is to make the complex appear to be

simple. ― Grady Booch

129PHP and Security

http://www.sitepoint.com/php/

	Jump Start PHP
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials
	Do You Want to Keep Learning?

	Server Kick-Start
	What is PHP?
	Setting Up
	Getting Started
	Windows
	Mac OS X
	Linux

	PHP Configuration
	Hello PHP World
	PHP Variables
	Arrays
	Comments
	Preparing Our Project
	Summary

	PHP & Data
	Operators
	Conditional Statements
	if Statement
	else Statement
	elseif Statement

	switch Statement
	Loops
	for Loop
	while Loop
	foreach

	Databases, MySQL, and PHP
	Summary

	Objects and OOP
	First Steps in OOP
	Extending Classes
	Templates
	Project Files
	Summary

	Forms
	Form Elements
	POST and GET
	Form Action with PHP
	Superglobals and $_REQUEST
	Forms and Databases
	Building on our Platform
	Summary

	Sessions and Cookies
	Cookies: Overview
	Sessions: Overview
	Session Vs Cookies
	Cookies
	Sessions

	Sessions and Cookies in PHP
	Cookies in PHP
	Sessions in PHP

	Project
	Summary

	PHP and Security
	php.ini and Security
	allow_url_include
	open_basedir
	Error Management
	Improving Session Security

	Validating Submitted Data
	Summary
	Conclusion

